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19. Abstract

In chapter 3 and 4 we deal with signal processing techniques for the reduction of
clutter noise created by random media composed of a high concentration of point scatterers,
The problem is to enhance a target emtedded in a random medium when the clutter noise
variance and the target echo location and amplitude are unknown. In chapter 3 we

analyze theoretically a technique that was first proposed by Newhouse et al (3) the so
called Minimization algorithm. In this technique we split the received signal spectrum
into n freguency windows. The minimum of the squared signals at each range delay is
then chosen. The calculated SNRE (signal-to-noise-ratio enhancement ) of this tech-
nigue agrees well with experiments performed by N.M.Bilgutay (4). We calculate also
the:Receiver Operating Characteristics (ROC) and find out that the improved SNRE of
4 Minimization is negated by Loss in detection properties.

In chapter 4 we describe a method for clutter reduction that also uses the split
spectrum principle. In this technique we construct the optimum receiver for each
range delay from the n outputs of the frequency windows. We calculate the ROC for
this technique and find it to be superior to minimization for most cases. We show
experimentally the effectiveness of this algorithm in clutter reduction.

In chapter 5 we summarize the results of this research work and show the
flexibility and versatility of the techniques by introducing improvements and
applications to the described methodse.
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ABSTRACT

Two topics dealing with the reflection of ultrasound bursts from
random media are discussed in this work.

In chapter 2 we develop a general formulation of the echo received
from a random scatterer ensemble illuminated by a short electromagnetic
or sonic signal. We show theoretically that a gradient in either scat-
terer concentration or in the field function of the transmitter/recelver
will return an echo which is partially spatially coherent (i.e. specular).
Furthermore we show that from the degree of coherency, i.e. from the ratio
of the random part to the nonrandom part of the reflected signal, the
scatterer concentration and scattering cross-section can be calculated.
We also show experimentally that scattering concentration gradient creates
a coherent reflection from whose degree of coherency the scattering con-
centration can be estimated.

In chapter 3 and 4 we deal wich signal processing techniques for the
reduction of clutter noise created by random media composed of a high
concentration of point scatterers. The problem 1s to enhance a target
embedded in a random medium when the clutter noise variance and the
target echo location and amplitude are unknown. In chapter 3 we analyze
theoretically a technique that was first proposed by Newhouse et al [3]
the so called Minimization algorithm. In this technique we split the
recelved signal spectrum into n frequency windows. The minimum of the
squared signals at each range delay is then chosen. The calculated SNRE

(signal-to-noise-ratio enhancement) of this technlque agrees well with




experiments performed by N.M. Bilgulay [4]. We calculate also the
Receiver Operating Characteristics (ROC) and find out that the improved
SNRE of Minimization is negated by loss in detection properties.

In chapter 4 we describe a method for clutter reduction that also
uses the split spectrum principle. 1In this technique we construct the
optimum receiver for each range delay from the n outputs of the frequency
windows. We calculate the ROC for this technique and find it to be
superior to minimization for most cases. We show experimentally the
effectiveness of this algorithm in clutter reduction.

In chapter 5 we summarize the results of this research work and show
the flexibility and versatility of the techniques by introducing improve-

ments and applications to the described methods.




CHAPTER 1
INTRODUCTION

CLUTTER PROBLEMS IN IMAGING SYSTEMS

One of the most important limitations of Ultrasonic Imaging Systéms
using pulse echo techniques is imposed by clutter noise at the system
output. This clutter nolse is usually caused by relatively small, highly
dense, randomly positioned scatterers. In one type of clutter problem
the target to be detected can be modelled as a strong reflector. Even
though the target echo is significantly larger than each of the individual
small random scatterers around it, the target 1s sometimes difficult to
detect due to the high density of the interfering scatterers. Such prob-
lems exist in almost every field associated with imaging. 1In Ultrasound
Nondestructive Testing the large grain boundary echoes makes it dif -1lt
to detect relatively large flaws [1,2,3,4]. In medical imaging the fine
tissue microstructure echoes sometimes makes it hard to outline the organ
boundary [5,6], and in Radar Systems, rain drops, chaff or sea clutter
{(7,8,9,10,11,12,13,14] are often strong enough to mask the target. Time
averaging or correlation techniques, which reduce random thermal noise
significantly, are not suitable for reducing coherent noise resulting
from echoes due to the stationary 1nterferfng scatterers.

In another type of clutter problem the targets are composed of a
high density of point scatterers. The reflected signal 1is accompanied

by a speckle pattern (spatial brightuness fluctuations) which 18 due to
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the random interference pattern of the reflectors composing the target.
This type of problem appear often in coherent optical imaging [15] when
the object (that can be modelled by a high density of small random re-
flectors) is 1imaged by a highly coherent illumination. In Ultrasound
Medical Imaging the echo from the tissue microstructure which can be
modelled in a similar way, is an important part of the image and helps to
diferentiate and characterize the different organs [16,17,18,5,6,19-21,
22-25].

In the text we refer to the first problem in which we wish to sup-
press the clutter echo and enhance a large target echo as a problem in
“clutter reduction”, and we refer to the second problem in which we wish
to reduce the speckle pattern of targets composed of a large sum of point
reflectors as a problem in "speckle reduction”.

Some conventional techniques ¢to reduce clutter and speckle are

described below.

GENERAL LITERATURE REVIEW
Scattering from Random Media

Ultrasonic signal processing techniques have developed dramatically
in the last decade mainly due to the introduction of low cost powerful
computers. But before reviewing the recent literature on modern signal
processing techniques in Ultrasound we should pay some attention to the
basic understanding of the scattering from random media as the quelling
of random media 1is the basis on which most of thé signal processing
techniques base their approach.

The theory covering the propagation of waves in random media is
vast. In [26,27,28] one can find the description of the basic acoustical

models for wave propagation and in [29,30] a discussion on some of the




theories when applied to biologlcal tissues is given.

The scattering from bodies with simple geometry can be calculated by
methods introduced in [26,27,31]. 1In the limit, for reflectors which are
much smaller than the wave length the solutions are explicit. These
solutions can be extended to complex elements by assuming a combination
of several individual centers.

The scattering 1s described through the definition of scattering

cross section. The total cross section is defined as [26,32]

1.1
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where I i3 the incident wave and P is the scattered signal. Of more
practical importance 1s the definition of differential scattering cross
section which is related to o by
o= [ a'dA 1.2

4x

where A is the solid angle. 1In general g'=g'(A). For the important

case of a small sphere (smaller than the wave length [26])

K -K 30-3
o' = l.[zI]4 a6[ S +__8 e cos 6]2 if A>> a
9 A K 2pg+p
where

A = wavelength

a = radius of the scatterer

9 = angle between the incident wave and the direction of scattering.
pg = density of the sphere.

p = density of the medium.

Rg = compressability of the sphere.

K = compressability of the medium.
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For practical cases isotropic scattering can be assumed only if
either pg=p or if the range of angles in eq. 3 1is small enough and ¢ is
such that o=o'j,.

The structure of biological tissue is very complex and it exhibits
nonhomogeneities in almost any scale. So the assumption of discrete, weak
scattering which 1s often used is clearly a simplified assumption as the
scattering bodies range from much smaller than the wave length up to much
larger than the range cell [32]. Theoretical results based on these
assumptions should be constantly challenged and verified to be considered
reliable.

The statistical properties of the backscattered clutter echo play a
ma jor role in the optimal signal processing to be chosen for clutter or
speckle reduction. It can be shown that if the scatterers are uniformly
distributed aud the number of scatterers in the range cell is high enough,
the backscattered echo amplitude assuming the plane or spherical wave
approximation, can be considered Gaussian with zero mean [33]. 1In [34]
the average power backscattered from random media with a density profile
is given for continuous wave propagation. 1In this publication Siegert
and Goldstein show that a medium which exhibits a density profile‘gives
rise to a coherent term which translates to an echo with non-zero mean.
In [35,36] Glotov calculates the average backscattered power from a slab
filled with nonuniform size scatterers 1illuminated by a burst. The echo
again contains a coherent term which resembles specular reflection. If
the slab 1is much smaller than the wave length the reflection is mostly
coherent and the random component becomes insignificant. In chapter 2
we will develop a general formulation for the backscattered echo from

random media on which our signal processing approaches will be based.
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Signal Processing Techniques for Clutter Reduction

One of the most popular techniques used in radar systems to overcome
clutter noise is the use of frequency diversity (agility). 1In this tech-
nique the Radar system possesses a center frequency which is varied between
pulses. This is similar to 1increasing the effective bandwidth of the
transmitted signal and thus, the clutter noise poﬁer which 1is iaversely
proportional to the system bandwidth [7,8,14], 18 reduced. The other
improvements obtained with the use of frequency agile Radars namely,
antljamming capabilities, range improvement and tracking are not of any
importance in biomedical Ultrasound and non-destructive testing. However,
techniques used for processing the frequency diverse signals will be the
measure against which the new techniques (to be introduced in chapters 3
and 4) will be compared.

A very good review of the literature on frequency agility 1is given
in [4]. To summarize, we only mention that the two most popular proces-
sing schemes are composed of either direct summation of the successive
echoes before demodulation (wh;ch is equivalent to operation with a wide
bandwidth or transmitting and receiving with all the frequency windows
simultaneously) or summing the different frequency windows after demodula-
tion (envelope detection). This is done when the target echo phase is
lost between pulses (due to fast fluctuation of the target position
between pulses).

After processing the frequency diverse signals a threshold is set to
enable a decision whether a target exists 1n a prespecified range cell.
In the technique which is most often used and called "CELL AVERAGING" we
evaluate the clutter noise power [9,37,38,10,11,12,13] from some "test

cells”. Then assuming that the same clutter noise power exists in the
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range cell of interest a CFAR (constant false alarm rate) detector can
be designed. This technique provides a noise riding threshold and only
cells assumed to contaln targets are presented. The detector design
depends on the statistics of the clutter echo. Usually the assumption
of Gaussian distribution for the clutter noise amplitude 1is used which
{8 true only if the number of scattering centers in the range cell is
high enough. A good review of clutter properties (in Radar applications)
is given in [39].

In 1981 "Split Spectrum Processing” was Iintroduced by Newhouse et al
[3,4] for the improvement of flaw visibility in the presence of grain
noise. In this technique the received echo is split into several fre-
quency windows (possibly overlapping) and the minimum of the squared
windowed signals at each range delay is then chosen. 1In [3,4] the tech-
nique is compared experimentally with other conventional techniques and
proved to have an 1mproved flaw to grain noise enhancement. As the
'Optimal Processing_' technique introduced in Chapter 4 in this report is
partially based on elements in this algorithm and will be compared with

it, we analyze the minimization algorithm theoretically in chapter 3.

Signal Processing Techniques for Speckle Reduction in Ultrasonic Imaging

Because the Laser speckle phenomenon 1s so similar to Ultrasound
speckle the Laser literature was the main source for techniques for
speckle reduction in Ultrasound. An excellent review of the optical
speckle phenomenon is given in [15]. It was only towards the middle of
the last decade that techniques for Ultrasound speckle reduction were
introduced and a substantial number of signal processing techniques

appeared in the open literature especially in the last few years [17,18,5,




20,22~24]. One of the earliest papers [40] uses spatial compound scanning
to reduce Ultrasound sgpeckle. 1In this technique the region of interest
is 11luminated from different directions and the different gray levels
are then compounded to create an image. This technique can be successful
only when the lnterrogated medium can be considered isotropic and non
refractive and the region of interest 1s accessible from different direc-
tions. Organs such as the breast are ideal for such compound imaging.
In 1978 Burckhardt argued for the first time that Ultrasound speckle
should be treated in a similar way to optical speckle. He modelled the
tissue as a collection of a high density of point scatterers anq he
evalugted the signal to noise ratio as the mean of the signal envelone
to the envelope standard deviation. From this definition the signal to
nolse ratio is 1.91. He later introduces a new algorithm "Compound scan
with maximum amplitude writing”. 1In this technique the maximum of the
different echoes associated with a certain point in space 1s selected
instead of the average. He claims that the difference between averaging

which is the optimum processing for this wodel and "Maximization"” {is

negligible.

In 1979 Abott and Thurgtone [19] analyzed the Ultrasound speckle
phenomenon based again on the concept of Laser speckle. The paper out-
lines the ways in which speckle can be reduced i.e variatioms in time,
space or fre&uency parameters. The first of these, time, involves a
phase diffuser which 1is equivalent to generating a random pattern In
phase from burst to burst or image to image. This technique was found
to be useless in Ultrasound as it resulted in image degradation due to
deterioration in focusing and distortion of the transmitted wave froant.

The second of these, spatial variation, involves either illuminating the




object from different directions or simply moving the tramsducer 1in
relation to the object sufficiently to change the phase distribution
across the transducer aperture. The third of these is equivalent to
frequency agility a concept that was discussed earlier in connection
with target detection and will be discussed later in this section in
connection with speckle reduction.

In 1983 Wagner et al published a pair of papers on speckle. 1In the
first [16] they calculate the second order statistics of Ultrasound
speckle in B images as a function of transducer dimensions and range.
Their results seem to fit reasonably with experiment. In the second paper
[17] they use the results obtalned in the first paper and some known
results from statistical decision theory to obtain decision rules for
lesion detection. The results turn out to be spatial averaging. Several
adjacent cells are summed to create a new cell (or a decision rule).
Obviously resolution is sacrificed in this procedure. In 1983 [5] Robinson
and Knight checked experimentally the performance of some spatial pulse
echo compound scan techniques. The performance of peak detected, minimum
detected and averaged recounstruction of point targets is compared. They
conclude that averaging is capable of increased range resolution compared
to peak detection and that the speckle pattern 1s smoother. The minimum
detected signal has an improved resolution of point targets and "shows

promise in location of shadowing structures”.

Frequency Compounding

A discussion on frequency compounding in connection with Ultrasonic
medical imaging is given in [22]. It is found that the degree of speckle
contrast reduction i{s {inversely proportional to the bandwidth of the

transmitted acoustic burst. Also, a considerable increase in signal to
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noise ratio of the speckle pattern can be achieved. 1In another paper
[23] the received spectrum of the backscattered signal is split into two
overlapping frequency windows and the respective channels are then summed
after envelope detection. This technique 1s reported to increase the
signal to noise ratio of the speckle pattern with improved resolution.
We will show later in the this report that the optimum receiver is some-
what different from the one implemented in [23] and should provide better

results.

MOTIVATION FOR RESEARCH

The fact that current techniques are not effective enough in the
reduction of clutter and speckle noise in Ultrasonic imaging systems is
the driving force for this project. Techniques such as spatial averaging
(or spatial compounding) are difficult to implement due to the relatively
high refraction of the biological tissue and man-made materials, the high
accuracy required from the scanning systzm, and the fact that many of the
regions of interest are not accessible from di:ferent directions. Fre-
quency diversity (or frequency averaging) 1s successful when it 1s easier
to transmit narrow frequency windows one at a time instead of the entire
available spectrum. In Ultrasound however it 1is possible to transmit
extremely wide bandwidths.

Extending the frequency range by using several elements with differ-
ent center frequency raises more problems than it solves. First the
propagating medium is highly frequency dependent (i.e frequency attenua-
tion dependence) and secondly the scattering from the microstructuie
rapidly increases with frequency. The beam pattern of the transducer is
also sensitive to frequency. Thus simple frequency compounding is not

useful.




In this work we concentrate our effort on a different type of signal
processing. We concentrate on clutter and speckle reduction through post
reception A scan processing only. By working on individual A scans we
eliminate the many practical problems associated with cnmpound scanning
and make the problem solely a signal processing one. The techniques to
be introduced here require that the signals should be processed at the RF
level. Techniques usually described in the literature do not deal with
processing at the RF level, but as we see later the hardship of working at

the RF level has its rewards.

SYNOPSIS OF THE REMAINING CHAPTERS

In this section we summarize the remaining chapters in this report.
In chapter 2 we develop a general formulation for the backscattered echo
from a random medium that can be modelled as an ensemble of randomly
distributed point scatterers. To simplify the mathematics we assume
isotropic scattering. The average backscattered power from the random
ensemble is calculated as a function of transducer parameters and the
spatial density profile of the scatterers. It 1is shown that the echo
from a random ensemble exhibiting a sharp volume density gradient may
resemble specular reflection. This explains for example the “specular”
reflection from organ boundaries in medical Ultrasound B scans. It is
also shown that the ratio between the power of the “"specular” echo, i.e.
the spatially coherent portion of the echo amplitude te the echo variance
should enable wus evaluate the scattering density if there 1is either a
density gradient or a fleld gradient. The results for the former case
are verified qualitatively by experiment.

After studying in chapter 2 the general behavior of the backscattered

echo from an ensemble of point scatterers we investigate in chapter 3
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theoretically an algorithm for clutter reduction that was first suggested
in [3,4]. The technique 18 called the "Minimization Algorithm” and in
fact provided the impetus for this research project. We calculate the
improvement in signal to noise ratio of this algorithm and compare it
with experimental results obtained in [3,4]. The theoretical results
seem to fit well with experiment. Finally we calculate the Receiver
Operating Characteristic of this algorithm.

In chapter 4 we pose the problem of clutter reduction under the
assumption that the local properties of the clutter echo are unknown,
namely the local variance. We describe a technique to estimate the local
properties of the signal without a priori knowledge of whether a target
exists in the region of interest. We use the results to develop so-called
optimum detection algorithms for both additive and multiplicative noise
based on some known results in statistical decision theory. For the
Optimum Detector algorithm for additive noise, we calculate the prob-
ability of detection as a function of signal to noise ratio (for the
clutter reduction problem). Some experimental results for this type of
processing for the enhancement of flaw to grain echoes in metal are also
given. Resolution performance and range blas of the suggested technique
are evaluated experimentally. We also compare the performance of the
"Minimization Algorithm” with the new technique on the basis of ROC
(Receiver Operating Characteristics), resolution, bias, and amplitude
dynamic range of the processed data.

Finally In chapter 5 we present conclusions, remarks and some sugges-

tions for future work.
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CHAPTER 2

SCATTERING FROM RANDOM MEDIA

INTRODUCTION

In this chapter we 1investigate the properties of the backscattered
echo from random media. The results obtalned here suggest new techniques
for scatterer density estimation and also form the basis for the clutter
reduction algorithms to be discussed in chapter 3 and 4.

The random wmedia throughout this work are assumed to be composed of
a high density (concentration) of point scatterers that can have random
size (strength) and/or random position. For simplicity we assume that the
average distance between the scatterers 1is much larger than their radius
thus allowing the assumption that their volume density is Poisson distri-
buted (if their position is random).

It i8 well known that under the assumption of plane wave approxima-
tion and coustant scattering density the backscattered echo from random
media can be considered Gaussian with zero mean provided the scatterers
concentration 18 high enough (central limit theorem). However, if the
average scattering concentration (or size) is not uniform as a fuaction
of range delay, or the sonic field exhibits a gradient the problem becomes
more complex. Siegert and Goldstein (34) calculated the backscattered
echo from a continuously illuminated time varying random medium, composed
of identical size scatterers under the assumption of plane wave illumina-

tion. They found out that the backscattered echo should have a non zero
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mean (coherent echo) which is proportional to the gradient of the scatter—
ing density. Some years later Glotov (36) analyzed the case of a short
transmitted signal iiluminating a slab filled with discrete inhomogenei-
ties for both the plane wave and spherical wave approximation and again
showed that the returned echo should have a non zero mean.

In this chapter we investigate the properties of the backscattered
echo from random media for pulsed transmission by extending the existing
theories to take into account field fluctuations and the scattering
density profile. We start by analyzing the backscattered echo from a
regular lattice with equal spacing and random scattering cross-section,
later we proceed to evaluate the returned echo from random media with
uniform scattering density and finally we analyze the backscattered echo
from random medium with non uniform scattering density and arbitrary

field structure.

THE REGULAR LATTICE
Let the echo detected by a sonic receiver at time t after transmis-

sion of a pulse, due to 3 single point scatterer at ¢ be written as
Eg(t) = 0;G(¥,t) (2.1)

where G(?,t) is defined as *ie impulse response of a system composed of a
transmitter/receiver illuminating a scatterer located at ?i and p is a
proportionality constant that depends on the scatterer scattering cross
section. Suppose that we illuminate a regular lattice for which the scat-
tering cross-section of the particles is a random variable (see Figure 1).
The backscattered echo from the lattice can be written (assuming the Born

approximation)
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n
i=]

where n 1s the number of the scatterers in the range cell, defined as
that region in space from which echoes are received at time . after
transmission.

The average power of the backscattered echo becomes

n n
P(t) = z 2 pipJG(fi,t)G(fj,t) (2.3)
i=1 j=1

Where -~ means ensemble average (and not time average). In order to
meagure this average one would move the transducer with respect to the
lattice and average the received power for a given range delay t. As-
suming pg to be statistically independent of Pj eq. (3) becomes

n n n
P(e) = o2 [ [6(#,e)|2 + 5% [ [ 6(#;,0)6(¢4,¢6) :
i=1 i=1 (2.4)

1+]
Rewriting eq. (4) we obtain
o n
P(E) = o2 | |6(#;,t)|2 + 32 {6(#],t)[6(E],t) +
i=]
_ (2.5)
+ c(?z,t) + oot G(F,yt) - G(i’l,t)] ++ }
Replacing the summations by integrals we obtain
BTy = 22 [ |G(2,t)|2dv + B2 |[ G(2,t)dv|2
Av v AVE V
-2 (2.6)
- P_ [ |e(e,t)|2dv
Av v
where Av i3 the volume of a unit cell of the lattice. but
_1_ - l_ = E = N (2'7)
Av A v
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and* eq. (6) becomes

P(t) = NoZ [ |G(2,t)|2dv + N252 |[ G(#,t)|2
v v

- N52 [ |6(2,t)|2dv (2-8)
v

as we see in the next section the second term in eq. (8) very often

vanishes. In this case P(t) becomes

P(E) = No,2[ |6(Z,t)|%dv (2.9)

and the backscattered power is directly proportional to the variance of
the scattering cross—-section of the lattice particles, 0%. It is obvious
that 1f the scatterers are uniform in size no backscattered power is

expected.

RANDOM MEDIUM WITH UNIFORM SCATTERING CONCENTRATION
When a random ensemble is illuminated by a transducer the received

echo at time t after transmission can be written**

n .
E(t|n) = 121 p1G(E;,t) (2.10)

where n is the number of the scatterers in the range cell. We assume that

the range cell has a volume V, and that it contains n randomly positioned

> > > >
scatterers at locations rj,r,r3,...,rn of strengths op1,02,+..,pn+ The

instantaneous power at time t is

>

A v
*For non cubic unit cell ‘;‘will be directly proportional to u and not
equal to n as 1s assumed here for a cubic unit cell.

**E(t|n) should be read: E at range delay t given that there are exactly
n scatterers in the range cell.




-

17

n n

P(tln) = ] T pq Py G(Fy,t) G(¥4,t) (2.11)
i=] jml _

This can be separated into two parts
) = 3 loC#.0)1%2 + ] ]

P(t[n) = G(¥y,t) |02 + ] G(Ty,t)G(Ty,t)pyp

=1 1 i 121 jzl 1 3 e (2.12)

145

The average power at time t after transmission, for differing locations

of the n scatterers 1in the range cell of volume V can be written

P(t[n) = 0 p}|G(#;,t)|% + n(n-1) o pj 6(Ffy,t) G(Fy,t) 2.13)

Note that P(t|n) is the average over all possible configurations of the
scatterer location ?i in the range cell. Assuming that ?1 is uncorrelated

with ?j for i#j, we can rewrite eq. (2.13) as

PCE[®) = n pZ [ |G(2,t)|2 p(2)dv + n(n-1) 5° | [ G(2,t)p(P)dv|2
v v (2.14)

where p(?) 1is the probability of finding one individual scatterer in the
volume element at ¢, and where the integrals are taken over the volume V

of the range cell. We may write
1
p(e) = - _ (2.15)
v .
Using these two relations we can write the ensemble averagéd power P(tln)

P(tn) = 3‘;5 [ le(e,t)|2dv + 3&251252 | [ c(2,t)dv|?2 (2.16)
v v v

To find the average power P(t) we have to evaluate
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P(t) = P(t|n) p(n) (2.17)

I
n=0

from eq. (16) and (17)

B(E) = 22 [ |6(2,t)|2dv | np(a) +
Vv n=1
+ P2 |[ 6(2,t)dv|2 T n(n-1)p(n) (2.18)
V2 vy n=1

where n is Poisson distributed with n as its average. Replacing
-]
y np(n) = & (2.19)
n=0

and (as is known for the Poisson distribution),

¥ n(n-1) p(n) = n2 (2.20)
n=0
we obtain
pCt) = N o2 [ |6(2,t)|2dv + N2 3% |[ G(2,t)dv|2 (2.21)
v v
where
a
N=-
v

Note again that P(t) is ensemble average and not time average and that to
obtain this average one would have to move the transducer with respect to
the medium (1f the medium 1s stationary) and average the received power
for a given t. We see that the first term on the right hand side of eq.
(21) is proportional to NpZ 1.e. to the average of the sum of the in-
dividual backscattered powers. We will therefore refer to it as the
incoherent power P;... The second term is proportional to (NB)Z, i.e. to
the square of the sum of the backscattered amplitudes. We will therefore

describe it as the coherent backscattered power, P.gh-
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We now show that P.,n equals the magnitude squared of the averaged
echo, and that Py, equals the variance of this echo.

From eq. (10), (15) and (19)

E(t) = 2 (tln ) p(n) = Np f G(f,t)dv (2.22)
=0 \'4
So that
Peon = |EI2 = 82 57 | [ 6(2,t)dv|? (2.23)
v

The fact that Pi,c 1s the variance of E(t) follows iumediately, since
o5 = [E? - |E|?2 (2.24)
Thus from eqs. (21) and (24),
oF =Py . = o7 | l6(#,t) | 2av (2.25)

From eq. (21) omne can see that the coherent term will be appreciable if
either N or £ G(f,t)dv are sufficiently large. Let us examine the inte-
gral £ G(t,t)dv for simple beam geometries. For example consider a plane
wave travelling along the 2z axis for which the field function can be
written

G(?,t) = I(t - 22)dz (2.26)
c
The coherent term of eq. (22) becoﬁes

E(t) = Np f I(t - z_z)dz (2.27)

Changing variables t' = t-2z/c eq. (22) becomes

E(t) = _iﬂ f I(t')de! (2.28)

ey
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The integral and with it the coherent term reduces to zero since the
signal cannot contain a dc component. Likewise for a point transmitter/

receiver

E(E) = N5 [ (I(t-2r/c)/r2)4nrldr (2.29)
0

which again reduces to zero. Thus we see that both for the case of plane
wave approximation as well as for the case of waves emitted from a point
transmitter/receiver the coherent term vanishes.

However in a work which 1s currently performed by Goyao Yu from
Drexel University it 1is shown that for almost any other geometry of trans-
mitter/receiver the integral £ G(?,t)dv does not vanish. For example,
Mr. Yu calculated numerically this integral for a point transmitter and
a ring shaped receiver and showed that the coherent integral is different
from zero ia the near field. HOgever in the far field the coherent inte-
gral practically vanishes. It is clear that the integral ]va(f,t)dvl2 is
usually much smaller than IVIG(f,t)|2dv. However the integral |‘j;G(1',t)dv|2
is multiplied by N2 while the integral fle(f,t)lzdv is multiplied
only by N (in eq. 2.21) which should make the ratio ]E]Z/OZE measurable.

These results obtained by Mr. Yu give rise to the'hope that scatterer
concentration and scattering cross section estimation would be possible

using coherent reflection caused by field gradients.

RANDOM MEDIUM WITH NONUNIFORM SCATTERING DENSITY

If the scatterers exhibit a certain scattering concentration profile
N(?) the algebra Introduced earlier becomes somewhat more involved. Rede-
fining p(?) to be N(t)% the average power at a certaln range delay t can

be shown to be,
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B(0) = 52 [ N(2)|G(2,t)|2dv + 32 | [ N(#) G(r,t)dv|2 (2.30)
v A

with

E(t) = 5 [ N(2)G(?,t)dv (2.31)
v

It can be seen by inspection that the integral of eq. (31) will be non-
zero provided N(#) has a gradient in the same direction as that of the
function G(?,t), i.e. in the direction of the sound beam. For the inte-
gral to be large the gradient of N(?) should be sharp compared to the
sound wavelength. The value of the integral for a step function in density
N(f) is derived below. Eq. (31) shows that a gradient 1in scattering
density in the direction of propagation of the sound beam will return a
spatially coherent echo. The same holds true for the echo from the bound-
ary between two regions with different scattering densities. For simplic-
ity we assume the imaginary boundary to be planar. Replacing # by z we

can write,

N(z) = N z<z, = _52 (2.32)

= N2 zZ 2 2Zg
For a plane wave G(z,t) = b(t-2z/c)cos[w(t-2z/c) + 8]; thus from eq. (31)
the returned echo from the boundary becomes

® o
E(t,) -% N, o [ b(t)cos[ut+e]dt + % N, oy [ b(t)cos[uwt+8]dt
Q -a

(2.33)
31 and 32 are the average reflection coefficients of the scatterers in

region 1 and 2 respectively. Note that the volume integral in eq. (30)
beccmes a time integral by change of variables. If the range cell is

situated such that the boundary is at its center the variance of E(ty,) can

be suown -0 be,




P A N . |
| & 22
02 = Liof + 03] = S [N,of + NopZ] [ |b(t)|2de
slof + of) = 2 1°f + NpeZ ({ 2.36)

where cf and o; are the variances of the returned echo from region 1 and

region 2 respectively. For No=0 eqs. (33) and (34) become

E(t,) = N; o § [ b(t)cos[wt+8]dt (2.33a)
o

o2 = %af = Nof £ [b(e) | 2de (2.34a)
o

Hence the ratio

—2 2
E(to) ,c oy Pl . [ b(t)cos(ut+o)de
- e 3 (2.35)
Lo [ e 2ae
o

Measurement of the quantities on the left hand side of this equation,

should allow us to estimate the quantity NE% since the integrals on the
P

right hand side can be computed. For uniform scatterers, 72/0Z 18 unity,

allowing the density N and the scattering cross-section to be estimated

independently.

SNELL'S LAW FOR DENSITY GRADIENTS

It {s easy to show that the scattered sound from density gradients in
a random scatterer ensemble obeys Snell's law. Consider two plane wave
transducers used for transmission and reception respectively, oriented .
at + 6 and - 8 degrees with repect to the 2z axis. Then the % and ¢
components of V G(f,t) are zero where the function G(f,t) is as defined
in eq. (1) but for separate transmitter and receiver.

Although eq. (31) above was derivea for the case of a single trans-

ducer used for both transmission and reception, it {8 equally valid for




the transducer pair desciibed in the previous paragraph. For plane wave

transmission and reception it can be shown that the integral in eq. (31)
is non zero provided that the gradients of N(f) and G(f,t) are parallel.
Thus a density gradient in a random scatterer ensemble will scatter a
coherent incident beam in the direction given by Snell's law, i.e. in the
same direction in which the beam would be reflected by a mirror parallel
to the planar constant density. Thig result 1s not unexpected and 1is
encountered often (without much excitement) in almost every field of

ultrasonic measurement.

EXPERIMENTAL RESULTS

According to eq. (33) we should be able to observe a coherent echo
from the boundary between two different regions of differing scattering
density.

One of the easiest ways to obtain a sharp boundary for scatterers
immersed in water, is to use sponges. A sponge can be cut to produce a
sharp boundary and when immersed in water the complex structure of the
spdnge fibers can be considered as randomly distributed scatterers.
Furthermore, one can clamp togetﬁet two sponges with different scattering
properties and thus compose a sharp boundary between two different media,
or one can use only one sponge, simulating two media with Ny=0 in region
1 and Nj in regioﬁ 2. Figures 2(A)-2(D) show pictures of sponges used in
such experiments. One can see that sponge A has the finest honeycomb
structure. Sponge B has a larger homneycomb structure, sponge C is even
more dilute and sponge D 1is the most dilute in comparison to sponges A,B
and C. 1In Figure 3 we see sponges B and C side by side. One can see

that the boundary is8 sharp in comparison to a wavelength (frequency of




Figure 2.2. A photograph of the surfaces of sponges A,B,C and D. The
fine honeycomb structure is visible. (The width of each plcture cor-
responds to 6.5 mm.)
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Figure 2.3. Sponges B and C side by side. It is seen that the honeycomb
structure of sponge B is finer than that of sponge C.
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Figure 2.4. Four different echoes from sponge B. Note that the coherent
echo component from the sponge boundary and the incoherent component from
within the sponge.
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2.25 MHz). One can also see again that the honeycomb structure of sponge
B is finer than that of sponge C.

Figure 4 shows echoes returned from sponge B. One can see that the
echoes from the boundary are highly coherent and exhibit negligible phase
change in comparison to the more random echoes from inside the sponge.
These echoes are incoherent in the sense that for a certain range delay
the amplitude is random with zero mean. Note that the echoes in close
vicinity to the first echo seem somewhat weaker than those from deeper in-
side the asponge (at greater depths the echoes weaken due to attenuation).
The reason is probably due to the fact that the transducer surface is
not perfectly parallel to the sponge surface and thus it takes more time
for the incoherent term to fully develop. This slight misorientation has
practically no effect on the coherent term magnitude. However because of
this effect, the estimation of the incoherent term should not be done in
the immediate vicinity of the first echo.

From eq. (35) we know that the ratio between the square of the aver-
age boundary echo and the average power from inside the sponge, neglecting
attenuation, is proportional to the scattering density. Thus it should
be possible to estimate the sponge density from A-mode echoes of the
types obtalned. We will not attempt here to estimate the sponge density
quantitatively, but will show qualitatively that the experimental results
behave according to the theory.

Figures 5(& ,(B),(C) and (D) represent the echoes received from
sponges A,B,C and D respectively. Each of these pictures is composed of
four superimposed traces from four different locations 1in the sponge,
with fdentical distances between the transducer and the sponge surface.

In Figure 5(A) which represents the received echo from sponge A one can
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Figure 2.5(A) Four traces (one on top of the other) of the reflected echo
from sponge A. Note the large cohereant component of the echo from the
boundary.

(B) Sponge B. Note that the coherent component 1is not as large in
comparison to the echo from within the sponge as in Figure 4(A)

(C) Sponge C. Note that the coherent component is smaller in comparison
to the echo from within the sponge in Figure 4(B)

(D) Sponge D. The coherent component was found to be negligible in
repetitive experiments.
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see clearly that the coherent echo 1s large 1in comparison to the echo
returned from within the sponge. Figure 5(A) is similar to Figure 4 but
with the traces superimposed. One can see that the coherent component
of the echo from the boundary is not as large as that of Figure 5(A) in
comparison to the echo returned from within the sponge.

Notice also the great difference in the degree of coherency for
sponges B and C. The honeycomb structures of these sponges are similar in
shape so that we can assume tha- $2/pZ is also similar. The 1integrals
in eq. (30) are also similar for the two sponges since they involve only
transducer and medium parameters which were the same for all experiments.
Thus the ratio between the coherent term and the incoherent term of sponge
B and C should be proportional to the scatterer density. Evaluating the
coherent term from the ratlio of the average of the first echo from the
boundary to the power from inside' the sponge, (the incoherent term) we
find the ratlo to be about 2.1 for sponge B and about 0.8 for sponge C
which implies a density ratio of about 2.6. The actual scatterer density
that can roughly be established from the micrographs is about 2.2 which

is in sgufficiently close agreement comnsidering the fact that only four

" sample points were used and that no special arrangements were made for

producing extremely smooth surfaces and for keeping the sponge surface
parallel to the transducer surface. Figure 5(D) corresponding to sponge D
with the largest honeycomb structure has practically zero coherent effect.
This is due to the fact that sponge D has much lower density than the
other sponges, too low to show a coherent term from only 4 sample points.

Figure 6 shows the echo from sponge D clamped to sponge B. Coherent
echoes are clearly seen nlong the center vertical line of the picture.

The angle dependence of the reflected echo was also investigated,
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Figure 2.6. The received echo from a 2 layer sponge complex composed of
sponges D and B. The coherent component can be seen on the central
vertical line. Also note that the power reflected from sponge D is less
than that reflected from sponge B.

Figure 2.7. Angle dependence of the coherent component (sponge B).
Note that while the coherent term is highly sensitive to angle variationms,
the echo from within the sponge i8 angle insensitive.
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using sponge B as a reflector. One can see from Figure 7 that the coherent
effect is highly angle sensitive whereas the echo reflected from within
the sponge is not angle dependent. In fact the behavior of the coherent
component 18 very much like that of a specular reflection as predicted by
the theory. The reflection from within the sponge is 1n&ependenc of angle
since this echo must be independent of boundary region.

It is pertinent to inquire how well the sponges used as test objects
in this work fulfill the requirements of the theoretical model. This
model places no restriction on the size of the individual scatterers or
on the number of the scatterers in the rauge cell but assumes the Poisson
distribution which implies that the scatterers are separated by a distance
large compared to their diameter. Weak scattering is also assumed which
implies that each scatterer produces no more than one echo. Figure 2 in-
dicates that the size of the sponge unit cells is no larger than that of
the sound wavelength of about 0.6 mm., but does not provide information
about the size separation of the individual scatterers. The fact that
the scatterers echoes from within the sponge are found to be spatially
incoherent, shows that the scatterer distribution even in the hexagonal
lattice sponges B and C, is8 at least pseudo-random. To establish the fact
that the coherent reflection is not due to a change in acoustic impedance,
we measured the sound velocity within the immersed sponges, and found it

to be similar to the sound velocity in water.

DISCUSSION

As can be seen ian each of the analyzed cases the ratio between the
coherent term and the incoherent term for the plane wave approximation
is proportional to the scattering density profile and the function G(;,t)

(eq. (35)). 1In order that the upper integral will be appreciable the

—_—
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scattering density gradient should be sharp compared to the wavelength.
If the gradient i{s not sharp enough the integral and with 1t the coherent
term become negligible and the backscattered echo can be considered as
Gaussian (1f the scattering density is high enough) with zero mean and
variance which 1s a function of the range delay. However, if the gradient
is sufficiently large the coherent term may be appreciable even if the
scattering density is low.

It was shown that the reflection from a sharp boundary separating
regions of different scattering density (or scattering cross-section) is
characterized by having a non zero mean when spatially averaged and a

variance of approximately
a2 = % [0} + 03] (2.34)

The statistics of the boundary echo can be considered Gaussian due
again to the central limit theorem with mean E(t) (eq. (33)) and variance
according to eq. (34). This result states in fact that if the scattering
density gradient is sharp enough the reflection from the boundary between
reglons of different scattering densities resembles specular reflection
and it might be appropriate to model the boundary as a strong specular
reflector embedded in a high density of point scatterers. We can use
this result to Incorporate boundary detection in chapters 3 and 4 where we
analyze some detection schemes for targets embedded im clutter environ-
ments.

We also showed theoretically that the ratio of the coherent signal
from the boundary of a scattering region to the incoherent signal from
inside the region (if the scattering density is low enough) is propor-

tional to the average spatial density of the scatterers multiplied by a




| @

32

shape factor. The experimental results suggest that this technique might
be useful in nondestructively estimating scatterer size and denéity even
if the scatterers are much too small and much too close to be resolved.
It might also be applied to extract more information on the tissue state
in biomedical ultrasonic imaging in regions for which the boundary struc-
ture is known and 1is smooth compared to the illuminating wavelength.

Another practical application that this method might provide is in
the estimation of the surface grain size of metals. In order for this
technique to succeed the metal would have to be polished and immersed in

a liquid of similar characteristic impedance.
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CHAPTER 3

THE MINIMIZATION ALGORITHM

INTRODUCTION

In chapter 1 we outlined sevaral algorithms and techniques for the
reduction of clutter and speckle. We found out that the techniques in
most cases do not provide sufficient improvement in clutter reduction.
The neéd for post reception algorithms for the enhancement of target to
clutter ratio is evident. In chapters 3 and 4 we will investigate two
algorithms for the reduction of clutter using split spectrum processing.
This type of processing and the algorithm to be described in chapter 3
was first introduced by Newhouse et al in 1982 (3). N. Bilgutay in his
Ph.D. dissertation empirically investigated this algorithm the so-called
"Minimization Algorithm”, and showed experimentally that it provides an
improvement in signal-to-noise ratio over conventional techniques. In
this chapter we analyze this algorithm theoretically. We evaluate-its
signal-to-noise ratio and its Receiver Operating Characteristics and
compare its performance to other split-spectrum algorithms.

Chapter 4 introduces a new algorithm which we call "Optimal Pro-
cessing” (The processing 1s optimal in the sénse that for every range
delay the processor maximizes the detection performance).

These two chapters can be read independently. Historically the Mini-
mization Algorithm preceeded the Optimal Processing and was invented “by

intuition”. So we start with the analysis of the Minimization Algorithm
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and procceed in chapter 4 to introduce the Optimal Processor. We compare
the two algorithms on the basis of detection properties at the end of

chapter 4.

The split spectrum processing was introduced by V. L. Newhouse, N. M.
Bilgutay and E. S. Furgason [3] in 1979. 1In this technique the wideband
spectrum of a received signal is split into several frequency windows.
The resulting signals are independent provided that these frequency
windows do not overlap, and can be compounded in ways similar to those
used in frequency agility so as to reduce clutter noise relative to target
echo (see Figure 1). Following the nomenclature introduced by Abbot and
Thurston [19] for their technique of illumination with different frequen-
cies, we will refer to their technique and to that of reference [3] as
"frequency compounding” so as to bring out the similarity between these
techniques and that of spatial compounding.

0f the frequency compounding techniques described by Newhouse et al
[{3], the most powerful used a new procedure, (the so-called Minimization
algorithm), in which the signals obtained by frequency splitting the echo
spectrum are squared and the minimum value at each delay is chosen. This
technique was found to provide a significant improvement in signal-to-
noise ratio with respect to the compounding techniques previously used
with frequenéy agility in either radar or ultrasound in which the signals
obtained by frequency splitting were either averaged and then squared or
were first squared and then averaged. A similar technique has recentlf
been applied to two-dimensional imaging [41].

This chapter is devoted to a theoretical analysis of the Minimization
Algorithm and its comparison with the two earlier known frequency agility

algorithms. We present expressions for signal to noise ratio, probability
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of detection and false alarm as a function of the number of frequency
windows, target size and ratio between the clutter variance within
and outside the range cell. The analytical results are compared with
simulated 2nd experimental data taken £fvom (4). PFinally it 15 shown
analytically that, 1in most cases, the Minimization algorithm provides
a much larger signal-to-noise ratio enhancement than the two classical
algorithms. However, it is found that this improvement in signal-to-noise
ratio enhancement results in a trade-off which increases the probability
of error in detectionm.

Although the algorithms described here could have applications in
several different fields, it should be noted, that the assumptions made
in the analysis refer only tc ultrasonic imaging, in either medical

applications or nondestructive evaluation.

ANALYSIS

In this section we perform a comparative analysis of the three fre-
quency compounding algorithms under consideration. We first define our
model for the target and its surrounding randomly distributed scatterers,
and specify our definition of signal to noise ratio. We then compute the
signal to noise ratio enhancement of the three algorithms under counsidera-
tion, and finally calculate their Receiver Operating Characteristics (ROC).

In all three of the algorithms analyzed 'here we obtain the frequency
diverse signal set used for the frequency compounding, by filtering (or
“"gplitting”) the received wide band echo from the target-clutter source
complex into different frequency bands or windows which may or may not
overlap. For the sake of mathematical simplicity our analysis in this

chapter i3 limited to the case of non-overlapping frequency windows.
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Note that the length of the range cell of the frequency compounded image

is inversely proportional to the bandwidth of these frequency windows.

Target Model and Signal to Noise Ratio
The model to be analyzed is composed of a strong point reflector (the
target) embedded in a high density of smaller scatterers (the clutter).
We recognlze two differences hetween the properties of the target and any
of the scatterers.
1. The backscattered echo from the target is much larger than that of a
point scatterer.
2. There is only one target in the range cell.

In order to determine the statistics of the peak target echo in the
presence of the clutter we perform a Gedanken experiment in which we keep
the target in its place but change the clutter configuration from experi-
ment to experiment and measure the echo voltage at a range delay corre-~
sponding to the peak target echo. The statiastics of the clutter without
a target in the range cell will be Gaussian (see for example (l)). It
follows that the statistics of the echo corresponding to the target range
delay will also be Gaussian but with non-zero mean. Thus we could write
two hypotheses for thils case
Hy: r = m + n1 for the case of the range cell containing noise 3.1)

and a target

Hg: r = n] for the case of the range cell containing noise only

Where r is the value of the received signal at the analyzed delay t, m is
defined as the target peak echo and nj is the noise voltage which 1is a
superposition of the contribution of the scatterers (clutter) in the range

cell. nj is a zero mean Gaussian clutter noise with standard deviation
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(s.d.) g1. If we knew the statistical parameters of the signal, (i.e. o)
and m) the statistical decision rule would be trivial. For example set-
ting a threshold level at m/2 would provide the best decision rule for
minimum probabiii.y of error. 1In ultrasonic imaging however we do not
have a priori information on either m or ¢j. Furthermore these parameters
change as a function of distance from the tramsducer due to attenuation,
shadowing or fluctuations in scattering concentration or scattering cross
section. 1In order to evaluate the different techniques (to be presented

shortly) we introduce the hypothesis set in the following ways

Hi: r = ooy

Hg: © = ng

Here n; a2nd n, are zero mean Gaussian clutter noise echoes with s.d o
and 0, respectively; ng will be considered always to have equal or larger
variance than nj (m 1s as before). The need for introduci : different
noise levels outside the range-~cell 1is to enable corfect evaluation of
the minimization algorithm. This algorithm is non-linear and thus treats
signal plus noise differently from noise alone (depending on the local
signal-to-noise ratio). Therefore with this model we are able to test the
effect of algorithms on clutter with unknown parameters that may slowly
vary as a function ;f position. To complete the set we should have added

a third hypothesis, Hp
Hp: r = nj

for the case of noise far away from the target which is smaller than that

near the target. For simplicity we exclude this hypothesis from the set.
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This will be shown to be justified, since Figure 3 demonstrates that the
algorithms considered here are monotonic in the sense that if n3<n, then
the output of the processed noise n3 is smaller than the processed noise
ny. Thus enhancement of Hj over Hy is a sufficient measure of the improve-
ment in the performance of the algorithm.

Since the signal must be squared for two of the three algorit.ums con-
sidered below, we will define the input signal-to-noise ratio in terms
of the square of the input signal (unsplit broad band echo). Even this
condition, however, 1s not sufficient to define SNR unambiguously. We
therefore select a definition which matches as closely as possible the
manner in which SNR is computed in the simulations and experiments with
which our analysis is compared below.

We denote Zin as the square of the input signal for case H; (target
in the range cell), and ny, as the square of clutter signal amplitude for

cagse Hy,. We define the SNR as

Y nin2 (3.2)

The average of the input signal defined as the square of the' target echo

is:

2§ = Elzfa} = E{Ca + ap)?} = a? + o2 (3-3)
and the clutter noise outside the target region is
/2 = [E{ny%} 112 = (36,4112 = /77 o2 (3.4)

Thus the input SNR becomes:
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(5) =%n . T*9 (3.5)
N'4n = /3 og

/nin

Signal to Noise Ratio Enhancement for Non-Linear Averaging

We are now in a position to calculate the signal-to-noise ratio en-
hancement of the so-called non-linear averaging algorithm, by which, when
used in radar frequency agility systems, incoming signals at different
frequencies are first squared and then averaged. When used in frequency
compounding, as 18 to be analyzed here, we start by zplitting the received
wide band echo into n adjacent but not overlapping frequency bands or
windows.? This procedure 1s equivalent to transmitting the frequency
bands consecutively as is done in frequency agility. Therefore the results
obtained throughout are applicable also for sequential launching of
narrow band pulses instead of postreception frequency splitting of a wide
band pulse. It is known (see for example - Beasely and Ward (7)) that
the signals resulting from this procedure are statistically independent.
Since the bandwidths of the signals produced in this way are n times
narrower than those of the original signal, the resulting range cells
will be o times longer. Hence the noise power, both inside and outside
the target range cell, will be n times larger than for the case of the
input echo. (It 1is shown 1in appendix A, however, that the target peak
echo location is unaffected by the frequency splitting process with cer-
tain restrictions omn the spectra of the transmitted signal. 1In the
appendix we use Gaussian shaped signals. Howevér this restriction that

1s introduced to simplify the mathematics 1s not essential as in success-

t Note that the letter n when subscripted stands for noise whereas with-
out subscript it represents the number of frequency splitting channels.
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ful experiments we used transducers whose impulse response envelope
deviated considerably from Gaussian.) Thus our two conditions to be
distinguished for the signals resulting froz frequency splitting can be

written as:

Hy: oty o= mn), 121,...n
Hy: y = n:i 1=1,...n (3.6)

where ry corresponds to the received signal in the ith window at a certain
delay, m is the target amplitude that does not change between windows and
nI and n; are the noise components corresponding to the cases H; (a target
in the range cell) and H, (no target in the range cell). Both nI and n:

are Guagsian but with different variances.
The variances of n1; and n:i are given respectively by

0’1 - no%

*2

oy = nol

After squaring each of the channels, the SNR of any one channel can

be written

2 2"
(8) -+ 09
Nich 0,2 /3 (3.7)

Summing the frequency windows and averaging we obtain:

t a 2 2 x 2 2, %2 ;
Zoue =Bl D rél =B { ] (mnyy) | = o(moy ) (3.8)
=1 i=1
— B —4.1/2 4 1/2
/2 = ifl at, '] " = (0304 ] " =0 /3 o ? (3.9)

and the output signal to noise ratio becomes
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2 + no?
E) = —t 1 (3.10)
N v3n ag

Combining eqts. (5) and (10) we obtain the signal to noise ratio enhance-

ment (SNRE) for non-linear averaging

2
S 2 2 arEy L+
SNRE = (N)o’ m® + no; . n[(gi9 ~ ] (3.11)
?%Ym /a(a? + of) CRYE
o1

Notice that thils enchancement depends only on the clutter noise
variance 012 in the target region, and that it varies from vn at m<<o; to
1//n at m>>03;. Thus signal to noise ratio enhancement only occurs at
small input SNR. There 1is, however, signal to noise ratio enhancement
for the output signal compared to each channel of the split signal as can

be seen from eqts. (7) and (10) which give for this case:

(s

S
&y - sme - v (3.12)
5)
Nicu

It 1s this property of the non-linear averaging algorithm which is used in

frequency agility radar.

Signal-to-Noise Ratio Enhancement for Linear Averaging

We now analyze the second of the "classical” frequency compounding
techniques in which the signals produced by frequency splitting the echo
are first linearly averaged and then squared.

It is obvious that splitting the signal and summing the results will
merely restore the original signal. Thus this process does not change

the relative amplitudes of the signal with respect to clutter. Hence,
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the SNRE of linear averaging does not produce any improvement with respect
to the original broad band echo. The algorithm does, however, produce
enhancement with respect to the individual signals produced by splitting
the echo spectrum. Thus one can show that the signal to noise ratio
improvement of the linearly averaged and then squared signal with respect

to the squared signal of a single channel is

S m 2

), %) *1 (3.13)
S m_.2

[Ngch (o:] +1

The fact that this signal to noise ratio enhancement approaches n at
large input SNR explains why linear averaging is preferred over non-linear
averaging in frequency agility radar when the input of the system consists
of a set of n frequencies from which a wide band signal can be constructed

by linear summation.

Signal-to-Noise Ratio Enhancement for Minimization of Squared Signals

In this section we develop the statistics of the minimized signal and
show that the Minimization algorithm provides a much larger improvement in
signal to noise ratio than the two techniques analyzed previously. We
start as before by splitting the received echo into n non-overlapping
frequency bands. The time dependent signal at each of these frequencies
is then squared* and the minimum of the squared signals at each delay is

chosen, i.e.

*In order to allow a falr comparison between the techniques analyzed in
this paper, we analyze here the effect of minimizing the square of the
signals produced by splitting the echo. This also conforms to the pro-
cedure ugsed for the slmulated and experimental data which we compare
with our analysis.
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2(t) = min[r3(t), .... ri(t)]

In order to investigate the statistical properties of tﬁe randon
variable z = min[Y;...Y,] where Y; represents the amplitude of the squared
signal after a certain time delay for the ith frequency window, we first
construct a simple experiment in which we choose the minimum of 2 random

variables
Z = min[Y],Y7] (3.14)

It is then easy to show (see for instance [2]) that the new distribution

function of z is given by

Fz(z) = Fyl(z) + Fyz(z) - Fylyz(z,z) (3.15)
where

Fy(y) = P(Y < y)

and

Fy,v,(y1,72) = P(Y1 <y} and Y3 < y2)

If we create a random variable which 18 the minimum of n random variable
Z = min [Y},...,Yy,])

Then {t can be shown by induction that the probability distribution func-

tion Fy(z) will be’

n n~-1 n n-2 n-1 n
Fz(z) = ] Fy () - | | Fyy(z2)+ | ] I  Fyyy(zz,:
=) 1 1=1 j=1+41 1 1=1 j=1+1 k=j+1 1 3k (3.16)
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In order to simplify the mathematics we will assume the Y;'s to be in-
dependent and identically distributed which correspounds to no overlap

between the frequency windows. In this case eq. 16 becomes

Fy(z) =1 - (1 - FY(z))n (3.17)
and the density function of the minimum becomes

£,(z) = nfy(z)[1 - Py(z)]%L (3.18)

If we split the received signal echo into n windows, each of the n
time signals can be considered to be a Gaussian process.
After squaring the signal containing clutter only the density func-

tion of the squared amplitudes for each window becomes

-y
£5(y) = L e 2032 vy >0
2xy of (3.19)

and the distribution function becomes

FS(y) = 2 erf v y >0
Y o2 (3.20)
where
2
y -Z
erf(y) -,7=; [ e 24x (3.21)
27 o

The minimized clutter noise variance can now be evaluated through
oo

6 2= [ 22 £§(2)dz - [[z £5(z)dz]?
o

z o (3.22)

whare f%(z) is the density function of the minimized squared clutter
signal [eq. 18] with Fy(z) = F%(z) and fy(z) = f%(Z).

When a target exists in the range cell the statistics of the returned
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echo changes and the signal can no longer be considered as zero mean. In
addition the variance of the noise may change if the target occupies a
significant part of the range cell thus reducing clutter from this region.
The effect on the target echo of passing it through different frequency
windows, is analyzed in the appendix and shown schematically in Figure 2
in which we plot the target echo at the output of the different frequency
windows. One can see that the maximum of the target signal is unchanged
in height and occurs at the same time delay for all the frequency windows
and will therefore not disappear due to Minimization. Hence the height
of the target signal peak is unchanged by minimizing but its width is
reduced. The width 18 reduced mainly due to the fact that away from the
peak region the signals corresponding to the different windows are phase
incoherent and for each range delay away from the peak it is highly
probable that one of these signals will be very close to =zero. The
Minimization which chooses the smallest signal for each range delay, will
therefore narrow target echoes.

The received target signal after filtering and before squaring will

have the following density function for a target in the range cell

- (x-m)2 ‘
£5x) = L. 2012 (3.23)
121! 01 e

where o is the s.d. of the clutter in the range cell. The density func-

tion of the squared signal becomes (for a target in the range cell)

tb(y) = L -y -m2 Ly *w)? y >0
2 VZny c: [e 20%2 4 e 2012 (3.24)

the distribution function becomes
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Fyt(y) = [erf (B 1F) - erf (B 77); y>o0
o; oI (3.25)

the mean signal of the target can be evaluated now through

zgut = g zfg(z)dz (3.26)

where as in eq. (17)
n~1

£5(z) = nf§(z) [1-F§(z)] (3.27)

likewise the output noise power n can be calculated through

out
Doue? = | 22£§(2)dz (3.28)
o
where
-1

£7(2) = nf§(z)(1-Fg(z)]

and the signal to noise ratio of the minimized signal 1is

zt
(S) = out (3.29)

=]
e
(a4

Note that 2zt

out 18 not merely a function of the target signal but also con-

tains a contribution due to the squared noise.

Using eqts. (26) and (28) the signal to noise ratio enhancement of
the Minimization algorithm has been calculated numerically and is shown in
Figure 3 as a function of the input SNR for the case of g1 = 0o i.e. with
equal noise near the target and far away from it. Also shown in Figure 3
are the signal-to-noise ratio enhancement provided by the two conventional

algorithms as described earlier. It is clear from the figure that the
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SNRE for linear averaging 1s only unity, and that the SNRE for the non-
linear averaging algorithm is even worse.

The Minimization algorithm is seen to be highly nonlinear. With high
input, SNR the output SNR is significantly higher than for either of the
conventional techniques. With low input SNR the improvement is not as
strong and 1ts performance actually falls below that of the other tech-

niques.

Receiver Operating Characteristics

The signal to noise ratio enhancement performance 1is undoubtly an
advantage of the Minimization algorithm especially 1f we intend to display
the processed signal without further processing. In this case the ratio
between the average signal to the noise power might be taken as a crite-
rion of the visual target enhancement. However, if we are interested in
target detection we have to examine the ROC of the proposed algorithms.
The fact that the signal to noise ratio obtained by the Minimization
algorithm 18 greater than those obtained by the other algorithms examined
does not insure that it will have a better ROC. This is illustrated by
Figure 4 which shows the probability density function of the output of a
possibly Optimuﬁ recelver, compared to the outbut probability deasity
function for Minimization. The density function obtained by using the
Minimization can be narrower, providing a lower variance (lower noise
power). However, the tail of the probability density function for the
minimized signal is broader than that of the optimum receiver, implying a
higher probability of high peaks and with {t a higher probability of false
alarm for Minimization than for the optimum receiver. We assume for
illustrative reasons that the target echo size was not significantly re-

duced (implying a high signal to noise ratio in the input) and the signal
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Minimization

Optimum

Probability Density Function, f,lz]

Processed Echo Amplitude, 2z

Figure 3.4 Possible probability density unctions for the Minimization
process compared to that of an optimum receiver.
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to noise ratio at the output is determined by the amount of reduction in
the noise variance. The reduction 1in the peak target echo obviously
effects the detection properties adversely.

To calculate the ROC for Minimization we use the model of eq. 6, in-
volving uncorrelated frequency windows. In order to obtain the ROC for
the correlated case, one could follow the approach outlined in [42].
However, as stated earlier we restrict ourselves here to the case where
the different frequency windows are not correlated. It is clear that
squaring the different frequency windows will not change the ROC. Thus it
is sufficlent to refer to the absolute value of the signal for calcula-
tions. It may be seen that for a given threshold z the probability of

detection and false alarm for a single frequency window, becomes

2 2
- (z = m) - (z - m (3.30)
© 20 %2 -z 20 %2
P.(Dy) = —L [ [e 1 dz+ fe 1 daz] ~lserf(m-2)
r 71 — * 2 *
27 o - o
2
- Z
o 2g%2
P(F) = —2 . [e © dz=1-2erf(Z)) (3.31)
2n o, z 9

where Pp(D1) is the probability of detection for a single frequency window
and Pp(F1) is the probability of false alarm for a single frequency window
for a given threshold z. The probability of detection for the Minimiza-
tion process equals the probability that the smallest of n target echoes
exceeds the threshold, i.e. the probability that all the n echoes are
equal or greater than z. Hence for n independent windows, the probability
of detection and false alarm for one range delay, are respectively,

o}
P(D) = [Bp(D)]® = [L+ erf (B2 2)) (3.32)
2 alx

| N—
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similiarly, the probability of false alarm for Minimization is equal to
the probability that independent noise signals all exceed the threshold.
Thus

n n
P.(F) = [P.(F))] = [1 - 2erf §;;] (3.33)
Note that in general the probability of false alarm Py of the whole A-line

depends ou the exact nature of the fluctuations of the clutter scattering

density or scattering cross—section and should be defined as

o o
Pp = ] Pe(F|ky) P(ky) = 7§ Pr(F)P(k{)

i=0 i=o0
where ki 1s the ratio of the noige std. in a cell without a target to the
noise std. of the target cell and P(kj) 1s the probability of finding such
a ratio along the A-line. P(kj) depends on the properties of the medium
and will change from one type of medium to another. Thus we concentrate
our analysis on the first term Pr(Flki)' In order to calculate Pp for a
specific case we require a knowledgc of P(ky) as well as of the function
P.(Flky) which are given in Figures 5(A)-(C) below.

The ROC for Minimization obtained in eqs. 32, 33 are plotted in
Figure 5((A),(B),(C)) for two, four and six windows respectively. The
ratio R=0,/01 of noise away from the target to noise near the target, is
used as a parameter in these curves. For the sake of comparison the ROC
calculated for linear averaging are also shown (Averaging 1Is known to
provide the best ROC for the case o5 = 0]). One can see that the ROC for
Minimization improves with respect to that for averaging as the ratio
between 0,/01 increases. For example, Figure 5(A) shows that for two win-

dows averaging 1s preferable to Minimization for R<2 whereas Minimization
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Figure 3.5 Receiver Operating Characteristics for Minimization and
averaging using two, four and six frequency windows for various ratios
of do to g1, 01 is the s.d at the target range delay and g, is the clutter
s.d elsewhere ‘curves thinned-out in the top right-hand corner to retain
clarity). m/o; was set to 1.

(A) Two frequency windows.
(B) Four frequency windows.
(C) Six frequency windows.
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is preferable for R»4. Figure 4(B) shows that the same situation holds
for four windows. Figure 5(C) shows that for n=6 Minimization is prefer-
able only for clutter ratios away from the target to that at the target
of R » 8. We may therefore conclude that if the ratio of clutter at the
target to clutter elsewhere 1s small enough, Minimization will be prefer-

able to averaging for detection.

EXPERIMENT

The theoretical SNRE plots of Figure 3 which compare Minimization
with linear and non-linear averaging are found to agree well with experi-
mental flaw-to-grain echo enhancement curves obtained experimentally in
(4). Flaw-to-grain echo ratio 1is defined as the ratio between the flaw
(target) peak echo amplitude and the largest echo amplitude from the
clutter present either in the squared backscattered echo signal (i.e.
input flaw~to-grain echo ratio) or the processed data (l.e. output flaw-
to-grain echo ratio). Therefore, this is an analogous but not quite
identical measurement to the SNR definitions defined for the three algo-
rithms defined above.

The experimental data shown in Figure 6 corresponds to a signal which
is obtained by summing two separate signals: i) Grain signals obtained
from a stainless steel sample with 86 ym average grain size, and 1ii) A
single echo from a flat surface reflector simulating the flaw. The plots
in Figure 6 are obtained by varying the amplitude of the simulated flaw
signal and measuring the flaw-to-grain echo ratios of the squared received
signal and the processed data for all three algorithms.

Although the particular processing parameters selected here are not
necessarily optimal for any of the processing algorithms, they result in

data representative of the general behavior of each algorithm in enhancing
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Figure 3.6 (from 24) Input-Output flaw-to-grain echo ratio curves and
discrete values for stainless steel samples of indicated grain size. Af
is the spacing between the frequency windows and b {s their bandwidth.
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the flaw echo. A more detailed description of the experimental techniques
used to obtain Figure 6 is presented in (3,4).

Bilgutay in his experiments used at Purdue a noise correlation system
as a transmitter/receiver. At Drexel, however, we used a pulser as a
transmitter and digitized the received echo with a high speed digitizer.
To enhance the signal-to-thermal-noise ratio we averaged the received echo
by summing 50 counsecutive returned A line echoes. Though the noise cor-
relation system output signal from a single reflector (see (4)) 1is dif-
ferent from the received signal due to a point reflector illuminated by
a pulse, the results, however, are very similar. Experimental results
using the new system are shown in Figure 7. 1In Figure 7(A) we combined
the received echo from a stainless steel with average grain size of about
76 ym and the echo reflected from a flat surface. 1In Figure 7(B) the
signal of 7A 1is squared (to enable comparison with the processed signal
which is done on the squared windows) and in Figure 7(C) we can see the
signal of PFigure 7(A) processed by the Minimization Algorithm. It is
easy to see that there 1s an apparent improvement in a signal-to-clutter-
noise ratio. We did not attempt here to optimize the signal-to-noise
ratio.by changing the number of windows or the amount of overlap between
them as was done for example, in (4), as we investigate here a theoreti-
cal model and not a particular case. Thus the signal to noise ratio
enhancement in our case 1is less. The advantage of using the new system
i.e. using a pulser and a high speed digitizer is in the data acquisition
time. The noise correlation system uses a water delay line that employs
a motor to control the delay. As a result acquisition of a single A line
composed of 512 sample points takes about 20-30 seconds. If the tech-
niques introduced in this research work are to be industrially implemented

a high speed acquisition system is clearly a must.
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Figure 3.7(A) A signal resulting from the sum of a signal from a stainless

steel (with an average grain size of 75 um) and a flat surface reflector

target.

(B) The signal of Figure 3.6A squared.

(C) Processed output for the Minimization Algorithm for 10 non-overlapping
frequency windows.
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It 1is clear from Figure 6 that for both averaging algorithms the out-
put flaw-to-grain echo ratio is linearly dependent on the input flaw-to-
graln echo ratio, which indicates that the performance of these algorithms
is not strongly dependent on the variation in flaw amplitude. These re-
sults also indicate that the linear averaging algorithm performs slightly
better than the non-linear averaging algorithm, which agrees with the
theoretical results shown in Figure 3. However, neither averaging algo-
rithm shows any noticeable enhancement in flaw-to-grain echo ratio experi-
mentally, in agreement with the theoretical derivations.

The Minimization algorithm is seen to show more sensitivity to the
flaw amplitude (as 1is evident from the non-linear nature of the input-
output flaw-to—-grain echo ratio) than the averaging algorithms. These
results are also in close agreement with the theoretical plot shown in

Figure 3.

DISCUSSION

In this chapter we analyzed and compared the performance of three
frequency compounding algorithms in improving the ultrasound visibility
and detectability of targets hidden by additive clutter or speckle, using
only the information presented in a single A-scan.

Many criteria need to be considered when comparing algorithms for
improving target detectability. These include signal-to-noise ratio or
contrast, probabllity of detection and false alarm (ROC), bias of signal
estimates, dynamic range, longitudinal and lateral resolution, and sim-
plicity of implementation. Each of these criteria can be improved, but
often only at the expense of increased dynamic range requirements, and

the introduction of bias in target amplitude estimation.
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In this chapter we analyzed the first two of these criteria for the
three algorithms under consideration, namely signal-to-noise ratio and
recelver operaging characterigstic. It was shown theoretically and con-
firmed by experiment, that the signal-to-noise ratio or contrast enhance-
ment produced by the Minimization algorithm is far greater than that of
either linear or nonlinear averaging, provided that the input signal-to-
noise ratio 1s larger than unity. This holds true whatever the ratio
between the clutter density in the target region and elsewhere. This
advantage of Minimization with respect to linear or nonlinear averaging is
however, to some extent illusory, since it may be accompanied by increased
probabilities of "target drop-out”. In cther words even though the con-
trast and visibility of the target is improved on the average by Minimiza-
tion, there is also an increased probability that the target echo will be
supressed by the subtraction of an awkwardly located unolse spike.

These consideration are quantitated by the calculated receiver oper-
ating characteristics illustrated in Figure 5 which show that for a given
false alarm rate, the probability of detection for Minimization is only
improved over that for linear averaging, when the clutter density near
the target 18 at least four times smaller than that elsewhere. This
situation is in fact not uncommon, since in attenuative media, the clutter
echo from regions close to the transducer is larger than that from deeper
lying target regions and so might be the case in fluctuating random media.
This situation is not rectified by the use of time-varying gain except in

the relatively rare cases where the attenuation and clutter density are

known at every point of the medium.
P e It io iu {uct ignorance of the local properties of the medium which
limits the effectiveness of our procedures. In the forthcoming chapter we

derive the optimum recelver for the target model analyzed in thie paper,
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RESOLUTION: Since Minimization involves filtering the target echo with a
narrow bandwidth filter, it reduces the longitudinal resolution in the
sense that target echoes may enhance or depress each other over a distance
c¢/2AF where ¢ 18 the velocity of sound and AF the filter bandwidth. Thus
a strong target might partially suppress an adjacent smaller target.

However, because of the effect discussed in counnection with Figure 2,
Minimization narrows the processed target echo to about one wavelength of
of the highest center frequency for splitting the spectrum, i.e. produces

sharpening in the processed image.

CONCLUSIONS

In this chapter we anzlyzed the so~-called Minimizaticn algorithm and
compared its performance in improving the visibility of targets hidden
by additive time-invariant clutter or speckle noise, with that of two
"classical” algorithms used in frequency agility radar, linear and non-
linear averaging. All three algorithms “frequency compound” signals
produced by filtering a single A-scan ultrasound echo with a number of
non-overlapping spectral “"windows". The operation of these frequency
compounding algorithms is therefore relatively simple since they operate
oa only one A-mode echo at a time.

Minimization was shown to be capable of producing significant improve-
ment in SNR and is predicted to produce sharpening in 2-D images. Neither
of these effects are produced by the other two algorithms studied.

Linear averaging 1s known to be the optimum detection algorithm for
additive noise and accordingly was found to give the best ROC of the three
algorithms tested. However, Minimization 1is shown to produce better ROC

when the clutter near the target has a standard deviation which is at
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least four times smaller than that elsewhere. Such cases are often en-
countered in attenuating media due to shadowing by large targets, and for
wedia which exhibit fluctuations in either scattering concentration or
scatiering cross-section along the A-lire. The analyses in this chapter
have been restricted to non-overlapping frequency windows. The conclusions
reached should, however, also apply to filtering with overlapping windows,
as is shown experimentally in (18) and will be further discussed in

chapter 5.
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CHAPTER 4

OPTIMAL PROCESSING

INTRODUCTION
Chapter 3 was dedicated to the analysis of the minimization algorithm.
We found out that this algorithm provides a significant improvement in
signal to noise ratio with a marginal loss in dynamic range. However, the
Receiver Operating Characteristic (ROC) was found to be less impressive.
Only for a high ratio of variances between a cell containing clutter and
the target range cell was the ROC found to be superior to averaging.
In this chapter we introduce a new technique for improving the ROC
of the received A-line. This technique which we call "optimal processing”
is also based on split spectrum processing. In the first part of this
chapter we 1introduce the theoretical basis and motivation for split
spectrum processing. We find that 1in order to construct the optimum
receiver (a receiver that will minimize the probability of error for a
given threshold) we should split the spectrum into independent frequency
windows whose number 1s directly proportiocnal to the required range
resolution. From the set of random variables that correspond to each
range delay we construct the receilver algorithm. For trivial cases i.e.
for cases where the noise and signal spectra are white in the frequency
range of laterest, the algorithm becomes the estimated mean divided by
the estimated standard deviation of the spectral decomposition components.
We proceed to evaluate the ROC of the new algorithm for media with

fluctuating clutter noise and compare it with the ROC obtained by thresh-
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olding the received signal without special processing. Then we introduce
a simplified version of the mathematical model for which we replace the
matched filters sinaT(f,~f)/n(f,~f) obtained 1in the optimum recelver
derivation, with Gaussian shaped filters and show that 1its performance
is very close to the performance of the mathematical model. We then
implement this simplified algorithm and show experimentally its effective-
ness in target enhancement. Finally we evaluate experimentally the

resolution performance of the new algorithm in comparison to Minimization.

THEORY

As 18 known, the received clutter noise power varies as a function
of range delay due to chances in scattering density, scattering cross-
section, attenuation, beam intensity etc. However 1if we take a small
enough time interval [Ti,T¢f] of the received echo e(t) we can assume in
most practical cases that the statistical properties of the echo in that
interval are constant. We will treat the problem of clutter reduction
in this interval [T;,Tf] as a problem in statistical decision theory.

The general Hypothesis set can be written as follows,

Hy: r(t) = ux(t-1¢) + n(t) Ty <t < T 4.1

Ho: r(t) = n(t) T¢g - Ty =T

where n(t) is a Gaussian random process with variance ¢2, o, p and Ty are
unknown and x(t) is a known signal. Though the returned echo [-=, =] {is
in general not stationary, we assume that in the interval of analysis
[Ti,Tf] the noise process n(t) would be a sample function of a statiomary
process (a requirement that is met if the interval [T;,T¢] is sufficiently
gmall). The problem is to find a decision rule as to whether u=0 or u#0

where o, u and t, are unknownm.
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Let us consider first the problem for 71 known. In this case as we
shortly show, the decision rule, can be constructed from the set of random
variables obtained by an orthonormal expansion (Karhunen-Loeve expansion,
see for example (42)) of the random process r(t). 1In this technique we
transform the problem from a random process problem into a random vari-
ables problem (see for example Scharf (43)). These random variables are

the ry's in the expression

n
r(t) = T ory ¢1(t) 4.2
1=0

where the functious ¢4(t) are orthonormal. To explain the procedure of
obtaining the coefficients of the expansion (the random variables) we
assume for simplicity that the spectrum of n(t) is recfangular as shown
in Figure 1, and that the spectrum of x(t) 1s no larger than B (There is
an apparent contradiction between the time limited interval of the ana-
lyzed signal r(t) and the limited bandwidth of the rectangular noise
process assumed 1in the example. However this assumption 1is often made

to simplify an analysis and 1in most cases 1is found to be justified).

To find the ¢4(t) one solves the integral equation,

T
Ao (8) = [Z Rog(e-1) #y(0)de 4.3

2

where Ay Is both the eigenvalue and noise power associated with the i-th
orthonormal function, and Rpn(71) 18 te autocorrelation function of the

noise process. One can show that

j2nfyt

pp(r) = Le for f; = if, ; £, = t < 4.4

1
N3

~n
N

1
/T




A

A
‘ 1 1
] )
fC fc
B
Figure 4.1 The rectangular noise spectrum in the example.
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and that

M 2 Sp(f) 4.5

For our choice of spectrum (showan in Figure 1), all the XAj's and
thus the variances of all the orthonormal coordinates are identical. This
makes them identically distributed (1f we have only clutter noise in the
input). Naturally we are not interested in the orthonormal functions
outside the frequency band B of the clutter noise since they carry no
information. (We assume that the spectrum of x(t) 1is no broader than
that of an(t) so that there is no energy outside of the frequency band of
width B). Note that for the general case where S,(f) is not white in
the frequency range of interest the ri's will not be identically distri-
buted. The assumption of a white spectrum in the example is therefore
merely used to provide an insight to the general solution of the problem.

In order to obtaln the set ri's of the random variables assoclated
with the K.L expansion we have to perform the process shown in Figure 2.
Since fi—fi_lafoa%, the number of filters ¢i(t-t) and the number of inde-
pendent random variables rj,...r, is directly proportional to the observed

time T and equals,
n=38T 4.6

The chosen time window [Ty,Tf] determines the resolution because we must
assume that only a single target exists in this window, since otherwise
the assumption that the target signal x(t) is known would no longer be
valid.

Now for the assumption that the target location in r(t) is known we
construct the likelihood ratio test (LRT) (The LRT gives a decision

criterion subject to a certaln risk function to determine which of two

_—
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Figure 4.2 Generation of expansion coefficients,

(A) Correlation operationm.
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possible hypotheses s true. It is composed of the ratio of the prob-
abillity density functions of the observables of the two hypotheses.) from
the set of random variables ry's. The random process problem set in
eq. (1) can now be restated as a random variables problem
Hy: r{ = p x4 +nyg

4.7
Hop: ri{ = ny
where the xy's are the spectral decomposition components rj of the signal
x(t) fed into the system shown in Figure 2. Instead of solving directly
the problem for which the noise spectrum is white in the frequency range
of interest (as in our example) we quote first the gemeral solution to
the problem of colored Gauslan noise. Later we return to our example as
a special case of the general solution.

If the spectrum of the received clutter signal is not white in the
frequency range of interest or the signal was not whitened before decom-
position (thé signal can be also whitened during decomposition by assign-
ing appropriate constant multipliers to the filters ¢3(t)), the likeli-
hood ratio test (LRT) becomes (see for example Scharf and Lyte (43),

Helstrom (15)),

n
I xyry/My
i=1
L(x) = 4.8
o Dr.x
1 2/5, - 1%1,2y,1/2
{ n-1 izlri 1 [ 121 A{ 19}

where Aj; is the eigenvalue associated with the i-th orthonormal coordinate
and xj is as above. The statistics of L(r) 1s the student t distribution

and we will discuss some of its properties later in the chapter. For the
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processing described here we whiten the clutter spectrum making it similar

to the example and assume that the target energy spectrum is similar to

>
| 4
the clutter power spectrum, which means that the target 1s assumed to be
n 2
a strong point reflector. We can then scale x(t) such that Z .x_i_ =1 so
i=1 A1
L‘ that
T .2
w ol x{/y = 4.9
i=1

but x4=x and ij=) for a white cpectrum within the frequency band B so

2
or BX a)
A
2
. 2
X al 4.10
A n
and the LRT becomes
4
1 n
= r
Ity
0 {a]
L(_r_) = 4-11

I= o
This is nothing else but the estimated mean of the spectral decom-

position components ry's divided by their estimated standard deviation

and can be written

]
L(r) = _F 4.12
= or
L]
To estimate o2 which 1s the noise power after whiteuning we have to
calculate
q
n a
1 2 1 2,.172
0, = { —— rs - = T } 4.13
r n-1 (1,2.1 13 121 i)
L &
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and the LRT becomes
1 n
=7 ry
nigl
L(x) = 4.14
n n
2,.1/72
(L (Ied-Lieg™)
n-1 "ya1 0 {=}

As the number n of the orthonmormal functions increase the performance of

the algorithm in estimating o improves. Note that,

L n 1 n T
Ezria—i‘.f

Tg n
r(t) ¢,(e)dt = L [ "r(e) T g (t)de 4.15
1 % i=1 T, b VY

i i=]l

2
Recall that for eq. 4.14 to hold X =1
A a
n ,x n
x(t) = [ xyé;(t) = V2§ ¢,(t) 4.16
i=1 0 {a]
8o
n —
I og(t) = /2 x(t) 4.17
1=1 A
and eq. 4.12 bec-res
n —_ Tf
1ty = /R [ r(e)x(e)de 4.18
1=1 Aty '

which 1s seen to be an estimate of the energy of x(t) in r(t). So eq.(l4)
is just the value of the estimated signal energy at the analyzed range
delay divided by the estimated standard deviation of the clutter in [Ty,
Tg). Naturally as the number of elements 1an the expansion increases so

does the accuracy of the variance estimate and the performance of the LRT.
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Now that we have derived an optimum LRT to decide whether an individu-
al range cell does or does not coatain a target, we return to the original
problem in which we treat the A-line as a collection of m range cells.
Each of these corresponds to a certain range delay of length T and pro-
duces n spectral decomposition components. Since we assumed n(t) to be
Gaussian these n ry terms for each cell are samples from a Gaussian
distribution. It is important to note that the cell statistics can change
from cell to cell due to either a change in scatterer density which leads
to a change Iin the variance of r(t) or due to the existence of a target
in the analyzed time window which leads to a change in its mean. (In
chapter 2 we showed that such a change (gradient) should lead to a co-
herent reflection. However if the change is slow compared to a wave-
length (as is the assumption here) the coherent component is negligible).
Recall that we do not have any information on the location of the target.
Thus we have to find a LRT for every range. There are three possibilities,
1. The analyzed range delay is such that 1=t where T is the target

range delay. This case is referred to as H] and was analyzed earlier.
2. There 1s no target in the time window of length T. This case was

also analyzed and is referred to as Hg.
3. There is a target in the time window T but t#t¢. For now we assume
that the resolution cell is no smaller than the anal; ::d time interval

T. In this case multiple targets in the time interval T should be

interpreted as a single target. We will return to the resolution

performance of this algorithm later in this chapter.
If we presented the likelihood ratio as a function of range delay we
would obtain a large signal wherever a target exists in the analyzed range
cell. 1In the absence of a target the estimated mean Is expected to be

small and the processed output would consequently be small. We would
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also be able to set a threshold and reject signals below a prespecified
signal to noise ratio. |

To maximize the resolution of the algorithm (eq. 14), set the fre-
quency windows should overlap so that they can be as wide as possible.
The n random variables corresponding to a certain range delay would then
become correlated. If the filters are correlated then the correlation
between any two channels containing only clutter can be shown to be
(assuming that the signal is whitened before processing so the clutter
power in all the channels is identical)

a©

- [ FuDFy(HHae

o1, § _ 4.19
S A N EHTENE:
For Gaussian windows (see (4))
£,-f, 2
- 1n 16¢(_1_1)
b 4.20

Pi,5 = ¢

where b 1s the bandwidth of the windows and fi, fj are the center frequen-

cles of windows i and j. The LRT for this case would be (19)
L(r) =xT k1t 4.21

where K is the covariance matrix which is composed of the above pj j's and
X is the mean vector of the set. This can be obtained by feeding the
system in Figure 1 the signal x(t), with the coefficients ry,...ry in the

. The vector f is composed of the set

figure ianterpreted as xy,...x,

r]1,...Tp obtained by feeding the system in Figure 1 the signal r(t). To

construct K we need also to know the variance of the channels
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o can be estimated from the riy's i=1,....n following the same approach
as before (eq. 13), if the noise spectrum 1is white. For colored noise
we should whiten the signal before processing and then apply eq. 1l4.

It is showz later that the range resolution of the optimum receiver
algorithm 1is not significantly degraded in comparison to the unprocessed
signal, even when the frequency windows do not overlap. We will therefore
not consider the case of overlapping frequency windows for target enhance-

ment further.

Detection Performance

The next step is to evaluate the performance of the optimal processor
which is optimum in the sense that it provides the best probability of
detection for a given probablility of false alarm for the analyzed range
cell ag defined in eq. (1l4).

We recall that 1in our procedure the original signal 1s segmented
into m cells and then spectrally decomposed to obtain n random variables
from which the LRT 1s calculated as depicted in Figure 2. Now let us
assume a target somewhere along the A-line. We define the Probability
of Detection, Pq as the probability that the processed data of the cell
containing the target will exceed a certain threshold. The probability
cf r.lse alarm Pg is defined as,

Pr = ] P(flki)p(ky) 4.23

=]
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where P(f|k;) is the probability that the processed data of the i-th
cell having a variance ki times that of the target containing cell will
exceed the threshold set for the k-th cell (the target cell). p(ky) is
just the probability of finding such a ratio along the A-line. Naturally
for each scenario of fluctuations appearing along the A line a different
P will exist. 1In the next section we will describe the detection per-
formance of the optimal processor for different ky-s-

It is clear that the performance of an algorithm depends strongly
on the distribution of p(kj). Naturally we cannot construct an algorithm
that will be optimal for all possible fluctuations in the clutter variance
along the A-line (i.e p{ky)). A rough wmeasure of comparison between
algorithms might be to check P(f|ki) for the worst possible performing
cell (the cell with the highest variance) and probability of detection
for the cell with the lowest clutter power. In order for this test to
be meaningful the algorithm should be monotonic in the sense that for 2
cells with o] > o2 the prcbability of false alarm of the processed data
of cell 1 will be equal or greater than the probability of false alarm
of the processed data in cell 2.

It is important to note that the best detection procedure will not
necessarily provide the best Receiver Operating Characteristics (ROC) for
this problem. (Recall that ROC is a plot of the probability of detection
as a2 function of probablility of false alarm of a receiver for varying
thresholds where usually the signal to noise ratio is a parameter). We
will give a simple example for this argument. If all the m cells had the
same variance, the optimum algorithm is the sum of the elements in each
of the cells. Sionce the variarze 1in all the cells 1is the same, the

variance ia the LRT becomes a proportionality comstant and the LRT reduces
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to the sum of the elements in each of the cells. The variance now no
longer influences the ROC, it merely changes the threshold for which the
probability of detection and the probability of false alarm is computed.
This example shows that the best detection scheme for each of the cells
(Which is composed of the estimated mean divided by the estimated standard
deviation) is, in general, not the best algorithm for improving the ROC of
the whole A line. The conclusion is that our optimum receiver has to be
checked against other algorithms for different ratios of variance in the
target range cell and the variance elsewhere. Depending on the actual
conditions, an optimum algorithm can then be chosen.

I° we knew the ratio k between the variances in the target range cell
and the cell for which P(f]ki) is calculated, then an optimum receiver
could be constructed. To derive the LRT for this case we use eq. 327 in
chapter 2 vol. 1 of "Detection, Estimation, and Modulation Theory" (42).
This equation 1s the general binary solution for the LRT for Gaussian
random variables with different vector mean and covariance matrices. In
our case the random variables are independent and the LRT reduces after
some algebra to,

n u
Loy r2(1-k) + B Y )2 = (o) 4.24
2 {a1 LEE ]

i
where k is the ratio of the variance of the cell containing clutter only
to that of the target cell.

In this case the probability of false alarm will be determined by the
cell containing only clutter and the probability of detection will be
determined by the target size and clutter noise in the target range cell.

p(f|ky) and pq are calculated through,
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- -]
Pq = [ fy (L1)dL;
y
4.25

®
P = [ f (Lo)dLo

y ©
where L, and L, are L(¥) for H, and Hy respectively

Eq. 24 shows that the LRT can range from the sum of the rj terms in
each cell for k=l to a close approximation of the variance of ry for
k>>1. Naturally choosing a given k for comstructing the receiver would
worsen the performance for any ratio which is greatly different from the
chosen one.

In general, the probability density p(ky) of the clutter in the
various cells of the A line will vary from one A line to the next, and
will usually be unknown. Thus there is usually not enough information to
construct am optimum receiver for a whole A line, and even if there were,
the form of the algorithm would usually have to be changed for each A
line which would be an extremely impractical procedure. We will therefore
in most cases be counstrained to restrict ourselves to the LRT of eq. 12
which provides the maximum probability of detection for a given prob-
ability of false alarms-for a target in one single range cell.

Before analyzing the performance of the LRT we point out an important
property of the function L(?) which is 1identical with the well known

Student t distribution. For this distribution

r(atl L2 —(2tL
£, (L)) = 21/2 [1L+220) 2 for u=0 4.26
o (aw) r(n/2) n
-g2/2
a2 7 @ 1212 172
£, (L)) = — 7 F(n+i+1)(§_)[__l_J s = y/o
1 /v [(n/2)(n+s2)n+1/2 {x0 2 1! “*Lf
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where le(Ll) 1s the density function of L(r) if a target exists in the
range cell and fLo(Lo) is the density function of L(Z) if no target exists
in the range cell (u=0).

This distribution can be seen to have the property that the prob-
ability density function fLo (Lo) is only a function of n, the number of
windows. Thus for u=0, i.e. in the absence of a target the variance of
L(f) 1is independent of the variance of the spectral decomposition com-
ponents ry. One of the consequences of this property is that even though
an A line may exhibit strong noise fluctuations in different range cells,
its LRT L(?) will have constant variance in every range cell. Another
congequence is that using eq. 12, the false alarm rate for cells not
containing targets for a given threshold 1s independent of che noise in
these cells. This 1s clearly a very useful property.

The number of variables in the LRT equation (eq. 1l1) is too large
to fully demonstrate 1its detection properties on one graph. We chose
therefore to set a constant false alarm probability and plot the prob-
ability of detection as a function the input of signal to noise voltage
ratio in the target range cell. False alarm probability P¢ and prob-
ability of detection P4 are determim;.d from 2qs. 25 and 26, using tables
of the student t distribution. The parameter was chosen to be the number
of elements in the expansion (or the number of independent windows). 1In
Figure 3 and 4 we present the theoretical results for several n the number
of windows. It is clear that increasing the number of windows improves
the ROC. Of course as n Increases the width of each spectral window
decreases which 1increases the time window [T{,T¢] and then worsens the
resolution. Figure 3 correspond to a constant probability of false alarm
(CFAR) of 0.01 and Figure 4 correspond to a CFAR of 0.05. One can im-

mediately observe that as the number of elements a {n the expansion
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increases the performance of the algorithm improves. As mentioned above
the performance as shown is also independent of the relative strength of
the clutter noise in the different cells but depends only on the signal
to noise ratio in the target cell. Thus 1f we had only clutter with
varying parameters along the A line the processed data would have the
same statistical properties for all the cells containing only clutter.

In general signal processing algorithms used to reduce clutter do
not give results which are independent of the clutter noise in the pro-
cessed range cell. Thus 1in the "Minimization" algorithm, analyzed 1ia
Chapter 3 the variance of the processed clutter data 1s a function of
the noise variance of the cell before processing and therefore Pg strongly
depends on the nature of the fluctuations of the clutter noise p(kj).
Note that for the optimal processing described by eq. 12 P¢ is independent
of the fluctuations in the clutter noise variance p(kj) since in this case
P(f|ky) = PE = constant so that Py = § p(flky)p(ky) = PE fnp(ki) = Pl.

In figures 5(A)-(D) the petformanielof the minimizationlaigorithm is
compared with that of the optimum receiver on the basis of detection
properties for different values of the ratio k of clutter standard devia-
tion 0, in the 'worst' cell of the A line to the clutter ogj in the target
range cell. Each graph corresponds to a certain value of k. We set
p(£f]lki) in all the graphs to be 0.05.

Ia general one can see that the performance of the optimum receiver
{8 independent of k because the 'Student' t distribution variance is inde-
pendent of the clutter as explained above whereas the performance of the
Minimization algorithm is good only for high enough input signal to noise
ratio. (However the signal to noise ratio obtained by the Minimization
algorithm is much better than the SNR obtained by the optimal processing

due to the nonlinear nature of the Minimization algorithm as 1s shown in
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chapter 3). Figure 5 also shows curves labelled "original signal”. For
this curve the LRT function used was that obtained by simply summing the
outputs of the spectral decomposition components rjy for each range cell
(without division by the estimated standard deviation). The use of the
sum of ry{'s as an algorithm is attractive due to the simplicity in imple-
mentation and with the simplifications that we introduce later the optimum
processing for n==» is equivalent to simply thresholding the original
signal deconvolved in the frequency range of interest to obtain P4 and P¢.

These were computed using the equations

® _(x-m)2
V2no Y
2
-X
w Z02k2
1 1
Pp = — [e dx
Y2x ko v 4.27

Figure 5(A) shows that, as was pointed out earlier, this type of proces-
sing 1s also the optimum 1if the clutter noise power is a constant along
the A-line (k=1). It is clear that for higher ratios of k the performance
of such an algorithm will deteriorate, as 1s seen in Figures 5(A)-(D).

The results shown in Figure 5 (A-D) may be summarized as follows.
For a finite number of windows the Minimization algorithm, (which is very
powerful in enhancing signal to noise ratio) 1s superior to the optimum
receliver scheme in detection performance for large input signal to noise
ratio. This 1s due to the fact that while the optimum processing is
ingensitive to the variances ratio k the Minimization performs especially
well in high signal to noise ratios for which the peak target echo is

practically not effected by the low noise power in the target range cell.




However the high noise variance in the worst performing cell is strongly

reduced by Minimization in a non linear fashion that provides a superior
ROC. As the ratio k increases the apparent advantages of the optimal
processor over the Minimization algorithm and the unprocessed signal
become more evident. Note also that for high enough ratio (e.g k=8) the
Minimization algorithm performance is superior to that of the unprocessed
signal. A surprising result is the fact that for low clutter density
fluctuations (k=1 and k=2) increasing the number of frequency windows

results in deterioration in the ROC of the Minimization algorithm.

EXPERIMENTAL RESULTS

In this section we describe an experimental realization of the
optimum detector algorithm. Some simplifications are made that allow
easy implementation of the technique in practical applications.

Recall that the filters in the K.L expansion are matched filters with
frequency response shape of sinn T(fn~f)/n(f,-f). In our experimental
realization Gaussian shape filters were used in order to taper the
effect of the sharp edges of the window. This use of non-matched filters
will now be justified after clarifying some assumptions and summarizing
some known results.

Up to this point we have not concerned ourselves with the transmitted
spectrum shape. In ultrasound imaging it can often be assumed, due to
the transducer impulse response, that the spectrum shape of the received
signal 18 roughly Gaussian. It 18 shown 1in appendix A that filtering
such Gaussian signals with Gaussian shape filters result in Gaussian shape
outputs. If the frequency spectrum of the input signal is much broader

than that of the filters the mean frequency and the standard deviation of
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the output signals will be practically unchanged. It is also shown that
the peak amplitude of a target echo will appear at the same raunge delay
for all the filters whatever their center frequency. If we normalize
each of the filters (an operation which 1s equivalent to whitening the
process within the desired frequency range and practically involves as-
signing a constant multiplier to the filters so that their output power
in the different channels will be identical), then the peak amplitudes
appear at the same range delay and have the same amplitude.

We can assume that the clutter noise spectrum in the input of each
filter is much wider than the filter bandwidth, thus for the sake of com-
parison between the matched and non-matched filters we can assume the
clutter nolse to be white. 1In this case (see for example (44)) the de-
tection proper.ies of a matched filter at a specific range delay depend
as is well known on the parameter d={%§:?§; which 18 the parameter that
defines the ROC performance of a receiv;;. Where E is the energy of the
signal to which the filter 1is wmatched, N, is the one sided spectral
density of the clutter noise, m 18 the mean of the matched filter output
for a target plus nolse in the filter input and ¢ is its standard devia-
tion. For the detection of a signal with additive Gaussian noise the
distance is a functlion of the signal strength m and the noise variance.
For mathematical simplicity assume that the filter is matched to a burst

of duration AT Instead of & Gaussian shaped signal. In this case

2

4.28
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So the distance m/2¢ for a filter matched to a burst of length .T is
A/2/ﬁ;§ (see for example 59) but this is the statistics of the range delay
corresponding to the expected peak target echo when filtered by a simple
filter of bandwidth b. 1Its mean will be A and the standard deviation will
be /—ﬁsi (assuming of course that the peak echo amplitude will not be
reduced considerably due to filtering). We conclude therefore that it
18 possible to use simple filtering instead of matched filtering without
a substantial loss of performance. In our realizatiun the maximum likeli~
hood ratio was computed from the estimated mean and variance from the n
outputs of the non-matched filters for each range delay.

In the experiments the target echo and the clutter echo were created
separately. The clutter signal consisted of the echo recelved from grainy
metal, whereas the target signal consists of the echo reflected from a
flat surface. Thisg makes it easy to change the signal to nolse ratio of
the received echo. The received signal was amplified and digitized at
the RF level using a 50 MhZ digitizer (Biomation). The information from
the Biomation buffer was read into a PDP 11-23 computer. An FFT was then
performed and the spectrum was split into 10 non-overlapping Gaussian
windows. Instead of using eq. 8 directly we adjusted the filters gain
to obtain a white spectrum in the frequency range of interest and then
applied eq. 12.

In Figure 6(A) a typical echo from a target plus clutter echo 1is
shown. In this case the spectrum of the received signal was split into
10 channels with identical bandwidths. Though there was some correlation
between the channels the amount of overlap was relatively small and we
asgumed the channels to be uncorrelated. This assumption simplifies the

computations needed to obtain the Likelihood Ratio Test. 1In Figure 6(B)
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the Likelihood Ratio Test 1s plotted as a function of delay. It is seen
that the ratio reaches its peak at the target range delay as 1is expected.

For target enhancement we might consider using the LRT instead of the
original signal. This will eliminate problems of incorrectly presenting
target size embedded 1in homogenous (i.e. uniform) type clutter (such as
grains for example) due to attenuation or shadowing. In these cases the

local signal to noise ratio 1is the right measure of the target size.

RESOLUTION AND RANGE BIAS

The theoretical evaluation of the resolution and range bias for both
the Minimization algorithm and the optimum receiver present a challange.
Though numerical calculation 1is possible it was found easier to evaluate
these properties empirically.

We examined these properties by simulation. Two target echoes at
different distances were summed and both types of processing were applied
to the signals. These distances were changed from half a wavelength up
to several range cells and three parameters were observed. The first
was the ability to resolve the signals by eye, the second was the effect
of the processing on the amplitude of the processed signal and the third
was pblas (i.e change) in the distance between the signals due to proces-
sing. It 18 clear that signals in proximity will have an adverse effect
on each other. For .the Minimization procedure this is due to the increased
probability of one echo target reducing the other and for the optimum pro-
cedure it is due tu 1lncreased variance caused by the neighboring target.

It was found that the resolution is phase sensitive. For example

for about half a wave length distance between the signals, which means

that they were completely unresolved before processing, they were resolved
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for the optimal procedure after processing but were very noisy for the
Minimization algorithm, as can be seen in Figures 7(A),(B) and (C) for
both the suboptimum receiver and the minimization algorithm. However for
an initial distance of a full wave length the signals were unresolveable
(Figure 8). This behavior was found to be cyclic, i.e for an even number
of half wavelengths the signals were not resolveable while for an odd
number of half wave lengths the signals were resolveable for optimal
processing and noisy and meaningless for minimization. For a distance
larger than the original range cell (defined by the bandwidth of the
transmitted signal) the signals were always fully resolveable for optimum
processing (Figures 9,10). (However for minimization the signals were
resolved only for a distanct of 8 wave lengths and above). It is impor-
tant to note that these empirical results were obtained for a certain
system and two processing configurations, namely 5 MHZ transducer and
either, 4 or 10 frequency windows.

Further work is needed to establish the general resolution properties
of the optimum receiver and the minimization algorithm. However it seems
that there 1s no significant degradation in resolution produced by these
types of signal processing for targets positioned by more than ome range
cell apart.

The above results were obtained without any added noise and it is of
importance to investigate these results under noisy conditions. A clue
to the behavior under noisy conditions can be learnt from the effect of
the processing on the signal amplitude of the two adjacent signals. One
can see the amplitude of the processed signals as a function of separation
It is seen that in general the amplitude of the processed data is reduced

substantially i{f the separation is smaller than the input range cell. In
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Figure 4.7(A) Simulation of the echo from two targets 1/2 a wavelength
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(B) Processed output for optimal processing of the signal in Figure 11(A).
Note that the targets are resolved but that there is a blas in the dis-
tance between them and that their awmplitude 1is substantially reduced.

(C) Processed output for the minimization algorithm of the signal in
Figure 11(A) Note that the signals are not resolved and that the ampli-

tude of the processed data is substantially reduced.
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(B) Processed output for the Optimal Processing. The targets are re-
solvable and there is a bias in the distance between them.

(C) Processed output for the Minimization Algorithm. The signals are
very noisy and not resolvable.
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(C) Processed output for the Minimization Algorithm. The output is noisy
and the signals are not resolvable.
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Figure 4.11(A) Targets separated by 8 wavelength.

(B) Processed output for the Optimal Processing. The signals are fully
resolvable and there is no bias in the distance between the signals.

(C) Processed output for the Minimization Algorithm. The signals are:
fully resolvable and there is no bias in the distance between the signals.
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order to evaluate the results qualitatively we have to compare the ampli-
tudes of the processed data to the value of signals embedded in noise
after processing. For the case of the optimum receiver we can readily
conclude that 1if the signal to noise ratio is higher than 4 or 5 the
results would not change considerably because the effect of the signals
on each other would be stronger than that of the nolse. Minimization
does not perform as well for low signal separation. For example for
approximately half a wave length separation the signal is reduced from
31,000 to ~ 2.4 which for any reasonable signal to noise ratio 1in the
input 1s negligble. However for a full wave length separation (the tar-
gets are not resolveable) the signal is reduced to only 1747 while for
a separation of a wave length and a half the signal again 18 almost
destroyed. For a separation of more than the original range cell the
signals will appear with a relatively high signal to noise ratio.
(Figures 10, 11).

It 1s important to note that while under some conditions two adja-
cent signals will be separated by the processing there will be a bias in
the distance between the signals after processing. This bias was experi-
mentally found to be very large for low separation between the signals.
For separation larger than the original range cell the bias was found to
be negligible. An example of such bias can be seen in Figure 8. One can
see that the processed signals are separated by much more than half a
wavelength which 18 approximately the original distance between the
signals.

We can conclude that for gignals which are separated by less than
the original resolution cell the results for both minimization and the
suboptimum receiver are not reliable and can result in almost a complete

loss of both signals.
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The reason for the surprisingly excellent range resolution perfor-
mance is due to the fact that in practice each of the signals has several
peaks. The estimated variance at each of the range delays corresponding
to these peaks due to the neighboring signal is clearly phase sensitive.
The variance estimate at each peak would be different and will depend on
the exact location of the peak in respect to the neighboring signal. It
is very likely therefore that in at least one of the peaks range delay,
the variance estimate will be low, making the ratio large. This explains
also the bias in the range distance when the targets are very close to
each other. If the enhanced peak is not the main peak target echo the

target range delay of the processed data would seem to be biased.

SUMMARY AND CONCLUSIONS

In this chapter we 1latroduced a techaique for clutter reduction
which maximizes the ROC performance in each range cell. This technique
has the property of a nolse riding threshold as its performance is inde-
pendent of the local properties of the clutter (but 1s dependent on the
local signal to noise ratio). It was pointed out, that determining algo-
rithm for clutter reduction on an A line, requires a knowledge of the
fluctuations 1an the power clutter along that A-line. In general each A
line would require a different processor. It is therefore more practical
to use a detection algorithm which is optimum for one cell. This gives a
likelihood ratio test of m/o = Student t, independent of clutter. We
found out that as the fluctuations in the noise variance increase so does
the performance of the optimal algorithm in comparison to minimization
and the deconvolved original signal. (Execept for k=1 for which the

unprocessed signal 1s the best). However in contrast to Minimization the
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optimum receiver requires a high dynamic range. Depenc.ag on the input
. noise variance the processed output can range from infinity for zero
noise power to almost zero for signals embedded in noise. The optimum
feceiver algorithm obviously provides the best detection procedure for
P individual cells. However as was pointed out in chapter 3 there are

several features that determine the performance of c-n algorithm as a tool

for target enhancement. We discussed already the ROC, dynamic range,
L. resolution and bias of the optimum receiver. However one of the most
important features of an algorithm 1is the improvement ia signal-to-noise
ratio for which the Minimization is much superior to the optimum receiver.
S (Note that we did not calculate the signal-to-nolse ratio for the optimum
receiver as the LRT m/c is itself a measure of the signal to noise ratfo).

SNRE 1s most 1mportant when additional information on the target is

- avallable. For example if the target is known to have a line structure
(for an image composed of A-lines) the contrast of the line target t:d the
background noise is more important than ROC of a single pixle. If several
pixles along the A-line are missing due to the processing the picture
will still be very clear to the eye if the signal to background noise Is
high. The eye will complete the missing details and random isolated

) bright pixles can easily be removed from the image. We showed that we
can simplify the system by the use of non-matched filtering instead of
matched filtering and exemplified the effectiver:ss of the algorithm

e by simulation. We also showed that surprisingly the range resolution is
not significantly deteriorated by the processing. However a range bilas
is introduced for signals separated by less than the original range cell.

e The current experimental system should be useful for correctly presenting

targets embedded 1in homogenous type clutter as it would automatically

-
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correct for attenuation and shadowing. With some wmodifications this

system can be used for detection of targets with arbitrary spectrum

embedded in clutter.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

INRODUCTION

As pointed out in the introduction the motivation for this research
stemmed from the failure of current techniques to provide sufficient
clutter and speckle reduction. In this research work we improve these
techniques with post-reception algorithms using the split spectrum prin-
ciple.

At the outset (chapter 2) an analysis of the backscattered echo from
random media is performed. We first calculated the average of the received
echo from a regular lattice with random size scatterers and found out that
the received echo 1s proportional to tﬁe scatterers size, scatterer
variance, scattering density and the function G(f:t) (which 18 the impulse
regponse of the system). Later we analyzed the backscattered echo from
medium with random scatterer location and size, but uniform average scat-
tering density with results similar to those obtained for the regular
lattice case. Then we studied the properties of the reflected signal
from a medium with random scatterer location, random size and non-uniform
scattering density. We showed that the received echo is strongly depen-
dent on the gradient in scattering density and calculated the echo average
for a step function in the scattering density. We confirmed the theoret-
ical results qualitatively by expe.iment using sponges to simulate an

inhomogenious medium.
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The results obtained in chapter 2 set the physical basis to the
scattering models introduced in chapter 3 and 4.

In chapter 3 we analyze the Minimization Algorithm, a technique
that was first introduced in 1979 by Newhouse and Bilgutay and showed a
remarkable improvement in flaw-to-grain echo suppression. We sghowed
theoretically that the signal-to-noise ratio of the processed data is
much better than that of the two other techniques that it 1s compared
to, without a significant loss of dynamic range (but with an inferior
Receiving Operating Characteristic). We demonstrated the effectiveness
of the algorithm in the reduction of clutter. (This was of course demon-
strated also in Bilgutay's work of 1982) and empirically examined the
resolution performance of the algorithm. It was shown that the resolution
18 oot too seriously adversely affected by the processing.

In chapter 4 we developed the theoretical basis for the split spec-
trum principle. We showed that by this procedure we transform the random
process problem into a random variable ome. We then constructed the
optimum receiver and used a simplified version of the this receiver to
construct an experimental system. We analyzed the performance of the
rece’ tueoretically and compared it to the performance of the original
sign  without "special processing”. We aliso investigated the resolution
performance of the algorithm empirically for signals separated by less
than a single channel range cell as well as for signals separated by less
than the original range-cell size. We show experimentally that the

resolution i3 not adversely affected by the processing.
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DISCUSSION

Though both of the techniques introduced in chapters 3 and 4 1.e. the
Optimal Processing and the Minimization algorithm were developed for the
reduction of clutter, there is a significant difference between them.
While the optimum receiver scheme allows us automatic detection of targets
by introducing a prespecified threshold that determines the minimum
signal-to-noise ratio for which the recelver decides that a target exists
in the range—cell the Minimization algorithm is a technique to enhance
the contrast of the target signal to a background noise.

The split spectrum proceseinyg introduces new ways for signal proces-
sing. We demonstratc the versatility of this algorithm later in this
chapter. The development of new techniques should be easy due to the
simplicity in presentation of the problem (a set of finite number of
random variables, set to be identically distributed). The technique is
attractive also due to the simplicity in implementation 1if simple f£f1l1-
tering instead of matched filtering is used. In practice there is no
need to digitize the RF data and apply FFT to filter the signal. The
filtering can best be done analogically, which in most cases involves
capacitors and Iinductors only (Flne tuning 1is needed to control phase
and amplitude response); Tr= post filtering process can also be done in
hardware (and very cheaply iﬁ most cases).

To show the versatility and flexibility of the use of the split
spectrum principle we present two simple ways to improve the algorithms

described in chapters 3 and 4.

e
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PHASE REVERSALS AND OVERLAPPING FREQUENCY WINDOWS

If one examines the Minimization algorithm carefully ome would prob-
ably decide that the principle behind the algorithm is the following: If
there is no target in the range cell there is a high probability that the
random noise phasor 1is very likely to cross the zero line if we observe
its movement as we slowly change the center frequency of a frequency
window along the received signal band. According to our approach we do
not change the center frequency of the frequency windows continuously
but in steps and have n non overlapping windows. In this case instead of
obtaining zero for noise only we choose the phasor which is closest to the
zero line instead of the zero we wished to "catch”. Fortunately we can
determine if there would have been a zero crossing had we shifted the
center frequency of the windows continuously. Thus, if any of the n
random numbers corresponding to a certain range delay changes polarity
{or reverses 1its phase) i.e. 1f there are both negative and positive
numbers among the n random numbers (one is sufficient), then it is clear
that there was a zero crossing. So we may decide that if we observe a
phase reversal (polarity change) we will set the new processor output at
zero instead of the minimum used for the Minimization algorithm and
instead of the m/o for the Optimal Processing. It is clear th;t if the
signal to noise ratio is high enough the effect of the new scheme‘will
not affect the target echo significantly. However for low signal-to-noise
ratio it would probably adversely effect the ROC though improvement in
signal-to-noise ratio should still be high. (Note that for very low
signal-to-noise ratio the basic model we used collapses. The target echo
decreases and the assumption that the target echo is much stronger than

that of each of the small point reflectors that compose the clutter is




not valid any wmore). In Figures 1 and 2 we show the same data shown
earlier in chapter 3 and 4 but with the addition of polarity changes.
The improvement In signal-to—noise ratio is evident for both techniques.

Another concept is the use of overlapping frequency windows. The
concept was first introduced by Newhouse et al but was never analyzed
theoretically.

Here we use overlapping windows instead of the n orthonormal windows
(that the K.L expansion calls for) to increase the probability of catch-
ing a zero crossing. The operation becomes somewhat more cumbersome but
proves to be very effective as 1s shown in the theses of Bilgutay (4).
The addition of frequency windows should provide also more information
to improve the variance estimmate in Optimal Processing. In his thesis
Bilgutay investigates empirically the performance of the Minimization
Algorithm for different degrees of overlap as a function of grain and
flaw size. It is pertinent to investigate the theoretical performance
improvement for overlappirg channels for both Minimization Algorithm and
the Optimal processing. The derivation 1s not straight forward and

probably only Chernoff Bounds can be established for the problem.

SPECKLE REDUCTION

In the introduction to this report we mention speckle reduction as a
topic of interest (mainly for applications in Ultrasound Medical Imaging).
Up to now we have used split spectrum processing only for the reduction
of clutter. We now show that split spectrum processing can be used for
speckle suppression (multiplicative type noise) also. Following the same
approach used in chapter 4 we obtain for the interval [T;,Tg] the follow-

ing hypotheses set,
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Figure 5.1(A) Processed output Ffor the signal of Figure 4.6(A) for the
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overlapping frequency windows. (B) Processed output the Minimization
Algorithm with phase reversal algorithm.
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Hy: r(t) = ni(t) with g1

5.1
Hg: r(t) = na(t) with oo
following the same procedures and arguments, the LRT obtained by n iden-
tically distributed Gaussian random variables assuming o; and g2 are known

is (see for example (42) chapter 2 pp. 107),

a 1
[lY - lz] ) r% g Y 5.2
% o2 = o

In this case no decision can be made without further information since we
cannot estimate 09 in region 1 and vice versa. However if we evaluated
the variance for a certain region and want to determine if a new region
belongs to the same category i1.e. has the same variance then a decision
rule can be constructed. It 1is fpund that in general the sum of the
squares constitutes the best detector. The sum of the squares might be a
good tool also for image formation of an Ultrasonic image built by A scans
if the grey levels are calibrated according to the lowest (or highest)
power region (this 18 of course done in any Ultrasound medical imaging
system on the market).

As was previously mentioned it is practically impossible to build
nonoverlapping filters that will cover the whole spectrum. Sometimes
due to resolution requirements we are forced to use wide bandwidth filters
and 1f the specified number of windows needed for speckle reduction is too
large to fit into the available transmitted spectrum we use overlapping
windows. In this case if the amount of overlap 1is substantial we are
faced with a set of random variables which are correlated. For .uls case

the general solution is the following (see (42))
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5.3

where Kg and K; are the covariance matrices of Hy and Hy respectively

defined as,
t A
E[(r 1 )‘Hll =K,

A
E[(z r%)[Hg] = K

For example assume that we split the spectrum into two overlapping

channels (due to resolution requirements).

Let us assume that p is their

correlation coefficient and that the two channels are assumed to have

identical power)
[ ]
_l F1(f)Fa(£)df

P 7
[Tlry(£)]af

80
t 1 e
Ky =E[z 17Hp] = 0y
o 1_
likewise
S
2
Ko = E[£ £t|H1] = 02 l
o 1_
and
- -
Kilg = 21 i
’ cf , (1702) | -0 1_

b4

The optimum receiver becomes,
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)

constructed as shown in Figure 3.
If we assume that N consecutive points on the A line are taken from
the same statistics but are independent, the best detection scheme can

be shown to be a moving average of the output,

N
z = ) z4 5.10
1=1
which is
T2 42
z= LT+ - 20 Ty 5-11

The first two terms correspond to envelope detection and the next term

to a lowpass version of the correlated signal.

SUGGESTED FUTURE WORK

In thls section we outline future work that could evolve from this
research.
1. Use of coherent reflection from random media for the estimation of
scatterer concentration. As was shown in chapter 2 there are two ways for
a coherent reflection to occur, i.e field gradient and average scattering
density gradient. The major problem in constructing strong enough field
gradient lies in the proper design of a suitable transducer shape that
will maximize the field gradient (or the Ilntegral of G(f,t) as defined in

chapter 2).
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Figure 5.3 A block diagram of the receiver as described in eq. (5.9)

for two overlapping frequency windows.
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The use of a scatterinz concentration gradient to estimate the scat-
tering concentration profile should have applications. Thus studies on
the behaviour of the reflection from smooth boundaries in the human body
in relation to the reflection from within the tissue should provide
information on the tissue state 1if the scattering model introduced in
chapter 2 can be assumed (i.e. if the microstructure of the human tissue
can be modelled as a collection of point reflectors). For example the
echo from the myocardium boundary in relation to the signal from within
the myocardium might indicate an abnormality of the myocardium (as the
myocardium fibers are often modelled as an ensemble of point reflectors).

As was pointed out at the end of chapter 2 this technique can provide
a way to estimate surface grain size in metal if the metal can be immersed

in a liquid of similar characteristic impedance.

ANALYSTIS OF PHASE REVERSALS AND OVERLAPPING CHANNELS

Phase reversals (or suppression of polarity changes) and overlapping
channels belong in some aspects to the same category of signal processing.
Both of the techniqués use the fact that a cell containing clutter only
has a higher probability of a zero-crossing thaﬁ a cell containing a-
target. Analysis of the signal-~to-noise ratio for both the Minimization
algorithm and Optimal Processing with polarity change suppression 1is
needed in order to evaluate the iﬁprovement of these additions to the
performance of the algorithms. A careful examination of the loss in ROC
is also needed to establish possible j actical implementation as a tool
in Image Processing. In preliminary empirical tests for the evaluation
of the resolution performance of this addition to both the Minimization

algorithm and the Optimal Processing we found out that the resolution is
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improved for both techniques. In Figures 4 to 13 we compare the results
of "suppression of polarity changes” applied to both algorithms with the
results without “suppression™. It 18 clearly seen that for all cases
the signals are much better separated with the suppression than without
it. It is necessary to establish the exact impact that the "suppression”
has on resolution, signal amplitude, dynamic range and range bias of

multiple signals.

AUTOMATIC FLAW DETECTION

The technique in chapter 4, "Optimal Processing”™, can also be used
for automatic flaw detection. We can us2 the variance estimate to con-
struct a threshold that will determine a constant false alarm rate. It
is also possible that flaw characterization in the presence of clutter
noise would be possible if different type of flaws would exhibit specific
characteristic spectra. 1In this case a receiver with specific constant
multipliers assigned to the different filters would "match"” a specific
flaw type (and a recognition of flaw type would be possible using some

known techniques in pattern recognition).

EDGE SHARPENING

According to the analysls presented in chapter 2 sharp gradients in
scattering concentration result in a coherent reflection that resembles
a reflection from a flat surface or a large reflector. When a plane wave
18 {1luminating a random medium with a step in its scattering concentra-
tion we found out 1in chapter 2 that the variance at the range delay
corresponding to the imaginary boundary separating the *wo regions of

different scattering councentrations is approximately half of the sum of
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the variances of the two regions. Thus we can treat this problem as a
target embedded in fluctuating medium where the standard deviation ratio
between the cell containing the target (the boundary) and the cells con-
taining clutter only can take the value of either 2 or 1/2 and the detec-
tion performance of the boundary can be evaluated using the type of ROC
graphs presented in chapter 4. If we use for example Optimal Processing
there will be no difference between the processed output of the signals
returned from regions 1 and 2 because m/¢ is independent of ¢ as was
shown in chapter 4. Thus for the boundary range delay the processed
output will depend on m/og where m represents the coherent term of the
reflected signal. Use of the Minimization Algorithm will result in
improved contrast of of the boundary echo with respect to both regions
as the SNR of the Minimization Algorithm is much larger than that of any

of the other analyzed techniques.

OPTIMUM DYNAMIC RANGE

One of the advantages of the new processors is that they do not
require a substantial increase in dynamic range. Though Minimization is
a biased estimator of the signal amplitude, for high signal to noise
ratios and not too large number of windows this bias 1is very small‘ and
can be considered negligible. Thus there is no need for a substantial
increase in amplitude dynamic range of the processed output. The same
holds true for the Optimal Processing if the targets are embedded in homo-
genous type clutter and the number of windows empioyed is sufficiently
high to allow a good estimate of the clutter variance.

1f we want to minimize the dynamic range requirements for non-

homogenous type clutter and still gain high signal to noise ratio without
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a need for a high number of frequency windows to estimate the variance
one can use the following scheme: Use the phase reversal scheme to decide
if a target exists in the range cell, i.e. if there was a phase change or
not. In the event that there 18 no phase reversal among the n random
varibles one can decide to present the original signal 1instead of the
two algorithms suggested in chapter 3 and 4. This scheme will not require
any Iincrease in dynamic range of the processed output but will have the
clutter reduction properties of the phase reversal scheme.

If one wants to improve the detection properties of this scheme one
way to do it is by allowing for example one or two phase reversals without
deciding on a zero (i.e. clutter) in the range cell. This way we will in-
crease the probability of detection with a similar increase in probability

of false alarm.
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APPENDIX A

It can be shown that for many different types of transmitted signal
and receiver, the peak of the echo of a point target will not change its
delay with respect tc the transmit pulse, due to the process of splitting
the received echo spectrum. We now demonstrate this for the case of a

transmitted signal of Gaussian shape

¢2
22

g(t) = e cos w,t (Al)

whose echo from a point target is passed through n filters with a Gaussian
transfer function.

It 18 clear that the peak of g(t) will occur for t=0 (or for t=rt
for a delayed version of g(t) for a target located at ).

The Fourier Transform of g(t) is also Gaussian

b?(m—wo)z -b2(m+mo)2
G(w) = V27 ble 2 +e 2 1 (A2)

The transfer function of the nth Gaussian frequency window can be written
as follows
Hy(w) = /21 byle

n (A3)

Multiplying eqts. (A2) and (A3), assuming that the cross products are
negligible (because the transfer function at zero frequency should be

closely zero), we obtain the output spectrum of the nth frequency window

]
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p*2 . w p* 2

- Po (uup)? - Po (wtug)

G (w) =~ G(w) B (w) =A[e Z +te 2 ] (a4)
where

ba2 = b2 + b2 (A5)

2 2
wob + mnbn

- (A6)
ha b2 + b2

and A is a proportionality constant which is independent of w.

As the output of the gaussian filters 1is Gaussian their inverse Fourier

transforms will also be Gaussian with

g(t) = e 2P cos w;t (A7)

and all the peaks will still be at t=0.
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APPENDIX B
The Likelihood Ratio Test of the General Gaussian Problem
In this appendix we derive the Likelihood Ratio Test for the dif-

ferent cases analyzed in chapter 4 and 5. We follow here the derivation

given in (19).

Let the set #,....¥, be jointly Gaussian. If we define

ry m]
e=]. | B2y =-a=]. (B1)
_fo_ _Ba_
and
cov[?] = E{{t-w)(eT-dT)] = K (B2)

Then one can show that

n
= Z)g(1/24-1 LeaT 2Ty =1 2
P(F) = [(2m)*[R|* €] exp[ z(f -2 )R (#-i) ] (83)

Under the first hypothesis H; we assume that % is specified by a mean

vector and a covariance matrix. We denote
E(#[H,] = m, (B4)

Ry = B[(2-d))(#T-d]) |m; ] (B5)




Likewise

E[Z]H,] = d

K, = E[(F-d,)(2T-20) (8,

The likelihood ratio test becomes

Pe(E[By)  |Ro| M Zexp(-L(#T DR  (F-idp)] By

&>

L(t) =

n
P (2H,) IKOIllzexp[fé(fm-ﬁE)Kl(f;ﬁb)] 2
Taking the logarithm we get

> » H1
st-dOrRe (-2, - LR (r-ml)g

o

Lo n + %Ln]Kll - %Lanol -y

Now the results used in chapter 4 and 5 can be obtained
1. Eq. 4.22

Corresponds to equal covariance matrices with K;=K,=K and m,=0.

cagse the LRT becomes
L(?) = %(fo‘lf) - %(?T—ﬁ%x'l(?—ﬁl) =

- T., -

which becomes

. i
tﬁ'{K_lf 2 Y
Hy
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(B6)

(B7)

(B8)

(B9)

In this

(310)

(B11)
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which 1s eq. 4.22
2. Eq. 4.25

Corresponds to independent components with equal variances. K; becomes

diagonal and Ky=kKj;, mo=0. 1In this case the LRT becomes

L(#) = %ka'lxIli' - %(i"f-i'{)xl(?-ﬁl)

(B12)
but
1 0~ "1 0~ 1
K, = o2 . K, = k o2 . di=m | . (B13)
0 1_ _0 1 1
so
L(Z) = .;_er‘lquf - _;.foqlf + dTg;l#
2 feg-g ] i .
= 97 2+ 02n Y
2k 121 1= * 1 '
02 becomes a constant multiplier. Estimating p=1 z ri we get
n
iy .2 Ko v o 22
L(r) = = § rf(i-K) + =X( § ry) (B15)
2 1= m 1=l
which 18 eq, 4.25
3. Eq. 5.3
Correspounds to m)=my=0. The LRT becomes
>
u(#) = LeTroly - LeTeole = LieT(rol-k7lyr)
2 2 2 (B16)




and eq. 5.3 follows

4' Eq. 5.2

Readily can be obtained by using

1 0
1
K1 = ci . Ko 0%
in eq. 5.3.
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(B17)
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APPENDIX C
The Use of the Coherent Term for Attenuation Estimation

From chapter 3 the ratio between the coherent and incoherent terms
for uniform concentration of scatterers in random media can be shown to
be

BZNIJG(r,t)dv|2

o2[|6(2,t) | 2dv
v

The average power reflected from range delay t taking into account attenu-

ation 1is

(C2)

P(t) = e 9t(NpZ[|G(2,t)|2dv + N252| [e(2,t)dv]|2]
v v

The concentration N is calculated through eq. C1 and the evaluation of P
and pZ 1s also possible. Measuring P(t) for 2 range delays t; and t2

allows the estimation of the attenuation coefficient a.

-aAt NEZJIG(r’tl)IZdV + NZBZIJG(r’tldvlzl

P(ty) |
P(t;) - NSIJIG(r,tZ)[Zhv + NZBZIJG(r,tZdvlz]

eT@AE . g ty-t; = At (C3)
and the attenuation coefficient a becomes

LoK [ P( tzi/Pzt]_S]K

At

a (C4)
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For high scattering concentration and sharp field gradients only the

second term in the denominator and numerator are left and eq. C4 becomes

T fe(r,tpdv |2 P(ty)
Ln v 5 .
G(r,t,)dv P(t,)
_ 9)dv | 1 _ c5)
a =
At




